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On Modelling the Light-Ion Densities in the Ionosphere

S. M. Stankov *

School of Physics
The University of New South Wales
Sydney , NSW 2052 , Australia

Abstract

A steady-state theoretical model is used to obtain variations of the H*/O* and He*/O%
density ratios in the upper ionosphere at middle latitudes. The model results are
compared with the existing data from satellite measurements. Analytical formulae are
constructed approximating the latitude and altitude variations of these ratios for direct
use in the International Reference Ionosphere (IRI) model.

1. Introduction

Modelling the densities of the light ions, H* and He*, for different geographic
locations and various ionospheric conditions is a problem with two main aspects of
difficulty. First, the experimental data (satellite, rocket, or ground-based) are too few
to embrace the altitude variations of the light-ion densities with respect to local time,
solar and geomagnetic activity, season, and latitude. This shortage restrains the validity
of some empirical models to narrow ranges of the mentioned parameters. Moreover,
the use of mass-spectrometer measurements generates the problem of calibration that
impedes the use of data from different satellites. Second, the purely theoretical
approach is not very helpful. The problems with the existing theoretical models for
n(H*) and n(He*) are in the precise setting of boundary values and in the choice of an
adequate neutral atmosphere model.

Here, a different approach to the modelling of the light-ion densities is proposed,
combining the advantages of empirical and theoretical modelling. On both sides of the
O+-H* and O*-He* transition heights the ratios n(H*)/n(O+) and n(He+)/n(O+) are
calculated by using a steady-state mathematical model and the solutions are compared
with satellite measurement data. Analytical formulae are constructed giving the altitude
variations of the density ratios depending on dipole latitude. The theoretical model
might then use an empirical model of transition levels to obtain the variations of the
above density ratios due to local time, longitude, season, etc. A possible
implementation of the constructed formulae in existing empirical models is discussed,
e.g. for improving the IRI ion composition model.

* On leave from the Geophysical Institute, Bulgarian Academy of Sciences



2. Mathematical model

A steady-state mathematical model is used to calculate the density profiles of the O+,
H*, and He* ions. In the model the equations of continuity, momentum, and energy
balance are solved numerically along a given centred-dipole magnetic field line from a
start altitude (~ 200 km) to an arbitrary upper altitude. The model is not self consistent
and uses a number of quantities as input parameters - the neutral atmosphere, solar
EUV flux, meridional component of the neutral wind, etc. As an extension of the
steady-state model, an original numerical procedure is developed for determination of

the boundary values in a self-consistent manner.
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3. Data base

Satellite data (O*, H*, He* ion concentration) from Atmosphere Explorer (AE-C) are
used for comparison with the model's results. These data represent the equinox period,
1/09/1974-31/10/1974, daytime conditions (10.00-14.00 LT), low solar activity (F10.7
= 90), and moderate geomagnetic activity (Ap=20). The data from all the longitudes
and within the invariant latitude range 20-40°N are sorted into four groups (Fig.1)
according to latitude: 20-25°, 25-30°, 30-35°, and 35-40°N. The O+ densities cover the
altitude range 150-700 km describing pretty well the noon O+ profile in the F-region.
Due to satellite evolution, the data from higher latitudes cover higher altitudes. There
are just a few data between 900 and 1300 km height, but they are very important for
comparing the theoretical profiles with the measurements at and above the transition
levels. The H+ and He* data are much more scattered than the O+ data.

4. Comparison between model results and measurement data

Adopting the neutral atmosphere from MSIS-90, [3] , the O, H*, Het density profiles
are calculated for the same conditions as for the satellite measurements described
above. The results are given on Fig.1. The dashed lines represent the O* profiles as
calculated by using the initial value searching method and obviously exceed the
measurements. New profiles are obtained (solid line) by a 5-10% decrease in the initial
value of the electron temperature, Te . The theoretical H* and Het* profiles are
corrected significantly by reducing the H and He neutral densities; this reduction is
different for each of the four cases and generally varies between 2 and 5 times. The
latter means that in MSIS those concentrations are higher but a correct estimation
could be obtained if the exact production and loss rates were known.

5. Results: analytical formulae for Ht/O* and Het/O* density ratios

Here only the method for obtaining the analytical formulae for the light-ion density
ratios will be demonstrated by using the corrected result given above. First, the altitude
variations of n(H*)/n(O*) and n(He*)/n(O*) are calculated for each of the latitude
ranges. Thus, four altitude profiles of n(H*)/n(O*) and four profiles of the
n(He*)/n(O+) ratio are obtained. After that, the four ratio profiles are used to derive a
latitude  dependence. Finally, the altitude and latitude ratio variations are
approximated by the two-variable function
c.y+d,
fs(x: y) = a; exp (biy)x( > ! , =12

where x is the altitude, y is the dipole latitude, i=1 stands for n(H+)/n(O%) and i=2
stands for n(He*)/n(O+). The coefficients are

a1=2.05149x10-19 b1=-0.184102 c1=0.018306 d1=6.59654
ar=4.78135x10-16 by=-0.455081 c2=0.059176 d»=5.11627

which are valid for the conditions stipulated above, i.e. equinox, noon, low solar
activity, 20-40°N dipole latitude. Additional satellite data are needed to obtain
coefficients for other conditions.



6. Discussion

The constructed analytical formulae are very useful for calculating H+* and He*
densities when the O* density is available. Thus, it might be used with existing
empirical models to improve their ion composition part. For example, the most
adequate ionospheric model to date, the IRI , shows the n(H*)/n(He*) ratio to be
almost constant with varying altitude, which in most of the cases is not valid.
Generally, the IRI ion composition is not reliable. There are at least two reasons: first,
the great variability of the light ion densities; and second, the limited data base (for
example, no data from AE-C, AE-E, DE-2 satellites are considered, [1,2]). Thus, the
use of results from a theoretical model based on satellite data is appropriate.

To extend the formulae to other conditions, additional data are needed. Also, a very
helpful tool is the constructed empirical model of O*-H* transition level, described in
[4]. The global O+-H* transition surface is based on OGO-6, Bulgaria-1300, Alouette-
1, ISS-b, and other satellite measurement data. The transition-level variations are
approximated by a fitting generalized polynomial which depends on the 5 parameters
used in IRI, i.e. sunspot number, month, local time, dipole latitude, and longitude. The
use of this empirical model is important for two main reasons. First, the O*-H+
transition level will serve as an anchor point, when theoretically calculating the density
profile. Thus, the uncertainty in the adopted neutral atmosphere model will be
overcome. The influence of the adopted atmosphere on the model results (especially
during daytime) has been already analysed in [5] and a high sensitivity demonstrated.
Second, the transition level model provides the important diurnal and longitudinal
variations.
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