

GPS TEC Measurements Utilized for Monitoring Recent Space Weather Events and Effects in Europe

S. M. Stankov (1), N. Jakowski (2), B. Huck (3)

(1) German Aerospace Center (DLR) – Institute of Communications and Navigation, D-17235 Neustrelitz, Germany
(2) Allsat network+services, D-30159 Hannover, Germany

Presented at the 2nd European Space Weather Week, ESWW-2005, 14-18 November 2005, ESTEC Session 3 (Ionosphere - positioning and telecommunication), 16 November 2005 Splinter Session (Recent space weather events and space weather services performance)

Outline

Ground and space based GNSS observations – the German Aerospace Center (DLR) experience

Generation of ionospheric disturbances – the importance of polar TEC monitoring

Propagation of ionospheric disturbances – TEC monitoring (Europe)

Propagation of ionospheric disturbances – case and statistical storm studies

Adverse effects on GNSS reference network operations caused by ionospheric disturbances

DLR ionosphere observation experience

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Institute of Communications and Navigation - Page 3

Major Space Weather Events in 2005

Generation of ionospheric disturbances – the importance of polar TEC observations

29 - 31 October 2003

Close correlation between TEC value behaviour and IMF southward component behaviour

Polar TEC observations

DLR für Luft- und Raumfahrt e.V.

GNSS reference network integrity during ionospheric disturbances

Non-linear Error

Estimation:

- . ionospheric influence on GNSS signals determined;
- . linear parts of these effects removed by applying ionospheric and geometric corrections;
- . influence on user position is interpolated from the influence determined on surrounding reference stations;
- . predicted error is compared with measured values and ionospheric and geometric errors are estimated.

REFERENCE NETWORK MODEL INTEGRITY

GNSS reference network integrity and TEC measurements

GNSS reference network integrity and TEC measurements

DLR Operational Space Weather Service - Ionosphere

- Operational provision of GPS data
- Pre-processing and calibration
- Generation of TEC maps and derivatives
- Development of forecast models
- Post-processing and analysis of space weather effects
- Analysis of benefit for service users

http://www.kn.nz.dlr.de/swippa/index.htm

DLR Operational Space Weather Service - Ionosphere / GNSS Reference Network

GPS / GLONASS stations

ascos reference network

RINEX format

6 sub networks

35 stations used

DLR Operational Space Weather Service – Ionosphere / TEC Products

DLR Space Weather Service and SWENET (Space Weather European Network)

Summary and Outlook

Pronounced seasonal and latitudinal differences in ionospheric storm generation/development

Positive ionospheric storms – more frequent and much stronger during winter

Ionospheric irregularities - higher frequency during night and higher intensity during winter

TEC – basic parameter for monitoring the ionospheric storm generation and propagation

Permanent combined ground- and space- based observations of several ionospheric parameters – the key to understanding space weather / ionosphere storm effects and their prediction

Operational space weather / ionosphere monitoring is required

in present-day GNSS-based precise positioning services

High resolution mapping - absolutely necessary if small-scale phenomena are targeted

Positive feedback from end users / customers

TEC (and derivatives) mapping - optimal resolution: spatial - 1 deg, time - 5 min

Space Weather Warnings / Alerts - optimal update rate: 5 min

Requirements for even higher resolution products and user friendly services

