Recent Developments in Space Weather Research and Services in Germany

N. Jakowski(1), V. Bothmer(2), W. Keil(3), H. Lühr(4), J. Rueffer(5),
and S. Stankov(1)

(1) German Aerospace Center - Institute of Communications and Navigation, 17235 Neustrelitz, Germany
(2) University of Göttingen - Institute of Astrophysics, 37077 Göttingen, Germany
(3) EADS Astrium GmbH, 88039 Friedrichshafen, Germany
(4) GeoForschungsZentrum Potsdam, 14473 Potsdam, Germany
(5) Allsat network+services, 30159 Hannover, Germany

Stan Stankov (S.Stankov@dlr.de) for the Space Weather Working Team meeting, 29 June 2006, ESA HQ, Paris, France
2nd National Workshop on Space Weather
held on 26-27 September 2005 in Neustrelitz, Germany (ca. 60 participants)
Organized at DLR - Institute of Communications and Navigation by:

Dr. Norbert Jakowski, DLR (Main Organizer)
Dr. Volker Bothmer, Universität Göttingen
Dr. Frank Jansen, Universität Greifswald
Prof. Hermann Lühr, GFZ Potsdam
Prof. Rainer Schwenn MPS, Katlenburg-Lindau

- Scientific investigations on the impact of space weather on communication systems and navigation (GPS, Galileo)
- Concept studies for small satellite systems dedicated to explore the solar effects on geospace, with special emphasis on the impact on communication/navigation systems (GPS, Galileo)
- Establishment of a National Space Weather Competence Center to provide scientific input and forecast capabilities

Research on Space Weather effects on satellite electronic systems. Started as a joint collaboration between the University of Göttingen and EADS-Astrium. Goal: Investigate the correlation between bit memory errors (in LEO satellites) and solar events. Based on LEO/GRACE data. (J. Dobschinski, V. Bothmer, W. Keil, etc.)

Space Weather research as members of the LYRA (Lyman-α Radiometer) / SWAP (Sun Watcher using APS and Image Processing) science consortium for ESA's Proba 2 mission in conjunction with SoHO, STEREO and Solar-B. LYRA: Solar UV irradiance monitoring for studying the effects on the Earth's ionosphere and atmosphere. SWAP: High resolution (1 min) imaging of the lower corona - ideal measurements for studying the onset/development of solar eruptions - flares and CMEs. (V. Bothmer)

Space Weather Services via the DLR project SWACI (Space Weather Applications Center – Ionosphere). Specific products, based on GNSS and space weather observations, are being generated and distributed to industrial users to help them mitigating space weather effects. (N.Jakowski, S. M. Stankov, D. Klaehn, J. Rueffer)

Participation in space weather related satellite missions: STEREO (Uni Göttingen, Uni Kiel, MPS, MPI), SWARM (GFZ, EADS-Astrium).
• **National Space Weather Satellite** with international partnership (NASA/GSFC, NRL, Hanscom AFB, etc.). Goals: Space weather effects - analysis and prediction. Status: User requirements, scientific payload studies in progress. (V. Bothmer, N. Jakowski).

• EU/ESA/INTAS project 03-51-6206 (2004-2007): Solar and interplanetary disturbances causing severe geomagnetic storms). Czech Republic; Belgium, Russia. (V. Bothmer)

• **Strong cooperation with industry** - provision of support/advise on technical issues: design of a suitable platform, use of launch capabilities, set-up of ground segments, and logistics. (EADS-Astrium, W. Keil)

• Establishment of a **SID (Sudden Ionospheric Disturbance) / Space Weather Monitoring System** in Germany for scientific and educational purposes (as defined by the Stanford Solar Center). A collaborative effort for the UN IHY-2007 between University Göttingen, EADS-Astrium, Stanford University, NASA, DLR-Neustrelitz, Felix-Klein Gymnasium, Planetarium Hamburg. (V. Bothmer, W. Keil, N. Jakowski, T. Kraupe)

• Establishment of a **German National Competence Center**. Feasibility studies started at Hamburg (Planetarium/Science Center) in connection to the ongoing data archiving preparations to accommodate NASA STEREO-Mission data (launch mid-2006). National partners: University Göttingen, Planetarium Hamburg, DLR, EADS Astrium, GFZ, etc. International partners: NASA/GSFC, NRL, ESA. (V. Bothmer, T. Kraupe, N. Jakowski)
The Space Weather Application Center - Ionosphere (SWACI) is a joint project of the German Aerospace Center (DLR) and the German Remote Sensing Data Center (DFD). The project is supported by the German State Government of Mecklenburg-Vorpommern under grant V230-630-08-TIFA-334. SWACI is a research project for developing the fundamentals of a space weather center whose services are focused mainly on ionospheric conditions/effects. The future DLR-Neustrelitz Ionosphere Center (NIC) shall serve the users by providing warning, nowcast and forecast, as well as historical data related to the ionosphere state and the space weather in general.

BACKGROUND:

SWIPPA was a pilot project, jointly supported by the German Aerospace Centre (DLR) and the European Space Agency (ESA) via contract ESTEC-16952/02/NL/LvH.
The space weather can induce adverse effects on GNSS-based communication, navigation, and positioning applications. Permanent ionosphere/space weather monitoring service should be established and specific products, based on GNSS and space weather observations, are being generated and distributed to GNSS reference network operators in order to help them deliver more reliable, precise and secure positioning services and to eventually reduce the operation, production, and other business costs. Relevant information and support are being regularly exchanged with SWENET (Space Weather European Network).

Objectives achieved by:

- Operational provision of ionospheric and space weather observations
- Pre-processing and calibration of GPS data
- Generation of TEC maps (and derivative products) over Europe
- Post-processing and analysis of ionospheric / space weather information
- Analysis of ionospheric / space weather effects
- Analysis of benefits for the service users
Network RTK integrity monitoring

LGI (Latitude Gradient Index)

Error

Error deviation

Det index [nT]

Error [cm]

Observed

Median

Universal Time [hour]

0 2 4 6 8 10 12 14 16 18 20 22 24
Mapping area:
Longitude: -5°, +25° E
Latitude: +35°, +60° N

Grid resolution (depending on GNSS 'visibility'):
Longitude: 1°
Latitude: 1°
Availability: 24/7
Update rate: 15 min
Latency: 1 min

http://www.kn.nz.dlr.de/swaci/
MuSTAnG -
Muon Spaceweather Telescope for Anisotropy at Greifswald

University of Greifswald:
F. Jansen, R. Hippler

1A Greifswald / Germany:
F. Jansen, G. Bartling

IEPSAS Kosice / Slovakia:
K. Kudela

HTS Dresden / Germany:
W. Göhler, S. Brunner

University of Bern / Switzerland:
E. Flückiger

AAD Hobart / Australia:
M. Duldig, J. Humble

Hanse city of Greifswald / Germany

UAS Stralsund / Germany:
G. Kolbe, B. Zehner

Shinshu University / Japan:
K. Munakata

(ESA/ESTEC contract 18835/04/NL/MV)
Muon Spaceweather Telescope for Anisotropy at Greifswald

1) ground based and real time muon telescope data (summer 2006)
2) international muon telescope network (summer 2006)
3) CME propagation, changes of cosmic ray intensity
4) space weather service orientated, for user of
 - satellite navigation,
 - telecommunication,
 - aviation, airlines
 - power line and pipeline companies,
 - governmental organisations
 (ESA/SWENET, COST 724 and others)

World-Wide Muon Telescope Network

MuSTAnG becomes part of the international European-Australian - Japanese – Brazil muon telescope network
STEREO Mission

Solar Terrestrial Relations Observatory
Launch: Mid 2006
2 Drifting Spacecraft in Heliosynchronous Orbit
Drift Rate: 22°/year
Scientific Payload:
SECCHI, IMPACT, PLASTIC, SWAVES

Science Objectives:

- Understand the causes and mechanisms of CME initiation.
- Characterize the propagation of CMEs through the heliosphere.
- Discover the mechanisms and sites of energetic particle acceleration in the low corona and the interplanetary medium.
- Develop a 3D time-dependent model of magnetic topology, temperature, density, and velocity structure of the ambient solar wind.

STEREO Space Weather Working Group
(Contact: V. Bothmer, Uni Göttingen)
STEREO - a milestone in space weather research/forecast activities

German contribution (Uni Göttingen, Uni Kiel, MPS, MPI, etc.): research, hardware and software - contribution to SECCHI Sun-Centered imaging package (SCIP), SECCHI stereoscopy imaging software, IMPACT particle detector, PLASTIC electronic parts, etc.

STEREO A and STEREO B will:

- Image the solar atmosphere and heliosphere from two perspectives simultaneously.
- Track disturbances in 3-D from their onset at the Sun to beyond Earth’s orbit.
- Measure energetic particles generated by solar eruptions.
- Sample fields and particles in the disturbances as they pass Earth’s orbit.
ESA’s Earth Observation Opportunity Mission

Swarm

The Earth’s Magnetic Field and Environment Explorers

Proposers:
Eigil Friis-Christensen, Danish Space Research Institute
Hermann Lühr, GeoForschungsZentrum Potsdam
Gauthier Hulot, Institute Physique de Globe de Paris
The **Swarm** mission will provide the *best ever survey of the geomagnetic field and its temporal evolution*, in order to gain new insights into the *Earth system* by improving our understanding of the *Earth’s interior and physical climate*.
Magnetic Field Sources

Sun
-25…25 nT

Earth
-3…3 nT, -25…25 nT

20,000 to 55,000 nT

Solid core
Fluid core
Mantle
Lithosphere
Ocean
Ionosphere
Magnetosphere

Sun's induced fields:
-25…25 nT

Solid Earth's induced fields:
-25…25 nT

Ocean's induced fields:
-3…3 nT

Sun's activity:
20,000 to 55,000 nT

Earth's activity:
20,000 to 55,000 nT
Summary of Research Objectives

Primary Objectives
Core dynamics, geodynamo processes, and core-mantle interaction
Lithospheric magnetisation
3-D electrical conductivity of the mantle
Electric currents in magnetosphere and ionosphere

Secondary Objectives
Magnetic forcing of the upper atmosphere
Magnetic signature related to ocean circulation
Relevance for Space Weather Applications

Quantities that can be derived in the Ionosphere / Thermosphere:

- Field-aligned currents
- Horizontal currents (electrojets) responsible for GIC
- Ring current intensity, index for magnetic storm intensity
- Electric field, possible trigger for plasma instabilities
- Electron density and density gradients, responsible for radio wave disturbances
- Detection of plasma bubbles in the low latitude ionosphere
- Thermospheric density/winds causing air drag and orbit disturbances of LEO spacecraft.

All these quantities can be provided in near-real time, based on an orbit-by-orbit down link.

ESA would consider such an operational mode if there is a European user group taking responsibility for rapid processing and dissemination of data.
Mission Characteristics

Mission schedule
Selection of Mission by ESA: May 2004
Realisation phases
 Phase B (definition): 2006
Launch: 2010
Mission Phase: 2010 – 2014 (nominal)

Constellation
3 satellites:
 2 side-by-side in low orbit
 1 in higher orbit
three orbital planes with two different local times
All have near-polar orbits for global coverage
Vector Field Magnetometer (VFM) with optical bench

Absolute Scalar Magnetometer (ASM)

Electric Field Instrument (EFI)

Accelerometer (ACC)
Next Steps

- SWACI: Further improve the services towards better spatial and temporal resolution of the nowcast service. Improve the quality of short-term ionospheric forecast, diversify the forecast products. Extend the current regional mapping towards local and global coverage.

- SWACI-2: Develop new improved services to address a larger set of professional GNSS users.

- SWENET (Space Weather European Network):
 Increase contribution.

- Coordination meeting focused on the further space weather effects research, satellite design issues, and IHY activities planning. Venue: EADS-Astrium/Friedrichshafen, July 2006.