Space weather Application Center – Ionosphere
A Near-Real-Time Service Based on NTRIP Technology

N. Jakowski, S. M. Stankov, D. Klaehn, C. Becker

German Aerospace Center (DLR),
Institute of Communications and Navigation, Neustrelitz, Germany
Outline

- Introduction
- The SWACI service
- Ionospheric impact on GNSS
- Ionospheric Perturbation Index
- A new ionospheric product distributed via NTRIP?
- Conclusions
Space Weather

Space weather refers to the conditions on the sun and in the solar wind, magnetosphere, ionosphere, and thermosphere that can influence the performance and reliability of space-borne and ground-based technological systems and can endanger human life or health. (Definition NSWP, USA, 1996)
Ionospheric impact on GNSS signals and ionospheric sounding capabilities

- The refractive index of the ionospheric plasma for radio waves is dispersive, i.e. frequency dependent ($\sim 1 / f^2$)
- Computing the differential phases at the two measured GPS frequencies L_1 and L_2 the Total Electron Content (TEC) can be determined.
- Measuring at L_1/L_2 GPS frequencies, the first order range error can be mitigated in positioning (ionosphere-free linear combination of phases)

Ionospheric positioning error d_i at the GNSS - frequency f

$$d_i = \frac{K}{f^2} \cdot TEC$$

$$K = 40.3 \text{ m}^3 \text{ s}^{-2}$$
Ionospheric range error / Frequency dependence

\[n^2 = 1 - \frac{f^2}{f_p^2} \pm f f_g \cos \Theta \]

- Plasma frequency
- Refraction index
- Magnetic field
- First order
- Second order
- Third order

Graph showing different frequency bands and their corresponding range delays for various latitudes and times of day.
Principle of TEC-map generation in DLR

Europe post proc. (1 day)
http://www.kn.nz.dlr.de/daily/tec-eu

operational (5 min)
http://www.kn.nz.dlr.de/swaci

Polar Cap post proc. (1 day)
http://www.kn.nz.dlr.de/daily/tec-np

Measurement, Calibration, Conversion to vertical
Assimilation of measurements into the regional TEC model
TEC-Map
Solar Control of TEC

- Day-time vertical TEC (7 days average) at 50°N; 15°E since 1995 in comparison with corresponding solar radio flux values F10.7 (daily)

- TEC is closely related to the solar activity variation, but shows also seasonal and semiannual variations
Detection of earthquake signatures in the ionosphere

Alaska Earthquake on November 3, 2002

(63.517 N/-147.444 E) at 22:12:41.0 UTC on NOV. 03, 2002 (DOY: 307) with a Magnitude of M = 7.9 (M_S = 8.5) in a depth of 5 km.

The Ap-index on that day was 35 (one day before/after: 28/23) and the F10.7-index was 166.5 (one day before/after: 162.1/174.4)
Outline

- Introduction
- The SWACI service
- Ionospheric impact on GNSS
- Ionospheric Perturbation Index
- A new ionospheric product distributed via NTRIP?
- Conclusions
Space Weather Application Center – Ionosphere
SWACI

Joint project of DLR Institutes: Institute for Communications and Navigation and German Remote Sensing Data Center

75% of the budget supported by the state government Mecklenburg-Vorpommern

Data Products

Electron density profiles from CHAMP radio occultation
Reconstruction of the topside ionosphere from CHAMP navigation data
Ground based derived TEC maps and derivatives from EUREF and ascos GPS networks via BKG
SWACI Data Processing System

External Data Sources
- EUREF ascos u.a. Stations
- NTrip: Javad/RTCM-RTK Data
- EUREF Caster

Processing at DLR
- Real-Time Feeder
 - swaci_srv Real-Time Processor
 - DLR internal binary data
- swaci_rtp

Map Products
- TEC Map
- TEC Err Map
- Lat. Grad. Map
- Lon. Grad. Map
- Tmp. Grad. Map

Picture Products
- TEC Pic
- Lat. Grad. Pic
- Lon. Grad. Pic
- Tmp. Grad. Pic
- DLR FTP-Server

Real-Time Processing System

NTRIP symposium, 6-7 February 2006, BKG, Frankfurt/Main, Germany
Institute of Communications and Navigation – Page 11
GPS Receiver distribution over Europe used in SWACI

Ground based monitoring-network used for SWACI

Sub- ionospheric points obtained from all available satellites
Space Weather Application Center- Ionosphere

SWACI

- Operational access to GPS (via NTRIP) and supplementary data which are required
- Preprocessing and calibration
- Generation of TEC maps and derivatives
- NRT provision of data products to users (5 min update rate)
- Development of forecast models and products

http://www.kn.nz.dlr.de/swaci/
SWACI Ionosphere Monitoring by GNSS

Monitoring of the Ionosphere by:
- GNSS Ground stations
- LEO Satellites using GNSS-receivers
 CHAMP (GRACE, TerraSAR-X).

Operational provision of global ionospheric informations for Com/Nav applications

Warnings of severe ionospheric perturbations
Prediction of expected ionospheric propagation conditions for Com/Nav signals
Post-Processing Research

http://www.kn.nz.dlr.de/swaci
SWACI - Ground based products

- TEC-Map
- Error-Maps
- Temp. gradient
- Long. gradient
- Lat. gradient
SWACI - Data Access Page

Products & Data

The data and products available through SWACI are based on primary data, mostly of them provided by the partners and institutions listed in the section "Service Description."

Furthermore, SWACI uses GPS measurements provided by European GPS ground networks like those of the international (EGNOS Service (EGS) and EUREF) whose data are made available online via the Bundesamt für Kartographie und Geodäsie (BKG).

Space based GPS data are taken from GPS measurements on board the German Geo-Research satellite CHAMP.

We are grateful to the above mentioned institutions, commissions and services for providing such important primary data which our service is based on.

Whereas the ground based data are operational with an update rate of 2 minutes, the CHAMP data are available depending on the CHAMP science data dump received at the DLR/DIRNeustrelitz.

Access

If you are new to this service and would like to have an access to products and documents, please first register by following the link "New Users". There you will get a user name and a password via email. If you have already registered, select the link according to your membership status (CONSORTIUM, COMMERCIAL, NON-COMMERCIAL, PUBLIC).

When using the SWACI service, please follow the policy on data usage.

Products

Ground based:
- Space Weather Warnings
- European maps of Total Electron Content (TEC)
- Maps of temporal gradients of TEC
- Maps of longitudinal gradients of TEC
- Forecasts
Outline

- Introduction
- The SWACI service
- Ionospheric impact on GNSS
- Ionospheric Perturbation Index
- A new ionospheric product distributed via NTRIP?
- Conclusions
Space Weather Event on 6 April 2000

Polar light observed in Potsdam (J. Rendtel)

Voltages on Gas pipelines of Ruhrgas

Electron- und Proton flux measurements on GOES

Perturbations of GPS-Measurements
Polar area and in Neustrelitz
Variability of GPS carrier phase of PRN 24 at different sites
6 April 2000, 23 - 24 UT, Sampling Rate: 1 Hz, 10s-window

ISPRA / Italy
Mean noise level
TEC = 2×10^{14} m^{-2} \rightleftharpoons 3.2 \text{ mm}

Neustrelitz / Germany
Enhanced perturbation level of GPS carrier phases may cause problems in resolving wave length ambiguities in GPS reference networks (up to 10 cm)
TEC - Fluctuations over Europe on 6 April 2000

TEC – variability from GPS- und GLONASS-Mesurements derived. GPS/GLONASS
Ground stations: Olpe, Essen, Porz, Hannover, Neustrelitz, Ispra

6 April 2000, 23- 24 UT
Data rate: 1 Hz, 10s-window
Solar flare effect on 28 October 2003 over Europe - TEC_{rel}

- **Strong solar flare on 28 October 2003 at 11:05 UT**
- **Total irradiance of the sun enhanced within a few minutes by 267 ppm**
- **TEC data processing indicates loss of data at numerous GPS links**
- **The number of usable GPS links for TEC processing was reduced rapidly from more than 30 to only 7**
Latitudinal dependency of the flare induced TEC jump

- **Strong latitudinal dependency of the height of the TEC jump observed,** up to 20 TECU or 3.2 m at L1!

- **The CME associated with this flare is larger than the Sun itself causing strong perturbations after reaching the Earth on 29/30 October 2003.**
Ionospheric perturbation on 29 October 2003

Performance of the ascos reference network

Polar TEC maps

storm develops at high latitudes already before noon

GPS-service outage

UT

06 UT

07 UT

08 UT

09 UT

10 UT

11 UT
Storm on 29 October 2003 / Polar TEC

Polar TEC on 29 October 2003 derived from IGS ground based measurements

Map resolution
Time: 10 min
Latitude: 2.5 deg
Longitude: 7.5 deg
Space Weather Impact on Network Monitoring Integrity on 25 July 2004

Performance of the GPS reference network of Allsat GmbH, Hannover degrades during the ionospheric storm on 25 July 2004

Different effects in different network areas over Germany

- Propagation of perturbation from high to mid-latitudes

Provision of users with ionospheric now- and forecast information

- Information to European users via the Space Weather European Network (SWENET)

- Further improvement of temporal and spatial resolution and accuracy
Ionospheric bad weather conditions

- Ionospheric and geomagnetic disturbances are strongly coupled.
- The planetary magnetic index a_p provides information.

- Perturbation degree K_p
 - Moderate: 6
 - Severe: 7
 - Very strong: 8
 - Extreme: 9

- Number of events 1994-2004
 - Wind: 507
 - Storm: 183
 - Thunderstorm: 41
 - Hurricane: 4

- Meteorologic analogon
 - Wind
 - Storm
 - Thunderstorm
 - Hurricane
Outline

- Introduction
- The SWACI service
- Ionospheric impact on GNSS
- Ionospheric Perturbation Index
- A new ionospheric product distributed via NTRIP?
- Conclusions
Definition of Perturbation indices

- Information on the strength of ionospheric perturbation is needed in GNSS applications (e.g. GNSS reference networks)
- Definition of indices which meet the practical needs with respect to the ionospheric effect, its temporal and spatial resolution

Gridded TEC values

Examples for perturbation index definitions

\[
GLON_{ij} = \frac{\partial u}{\partial x} = \frac{u_{i+1,j} - u_{i-1,j}}{2\Delta x}
\]

\[
GLAT_{ij} = \frac{\partial u}{\partial y} = \frac{u_{i,j+1} - u_{i,j-1}}{2\Delta y}
\]

\[
GHOR_{\text{max}} = \sqrt{GLAT_{\text{max}}^2 + GLON_{\text{max}}^2}
\]

\[
\sigma_p(\lambda, \varphi)^2 = \frac{1}{N_{GP} - 1} \sum_{i=1}^{N_{GP}} (p_i(\lambda, \varphi) - \bar{p}(\lambda, \varphi))^2
\]
Comparison of different indices with differential TEC maps on 29 Oct 2003 at North pole region

- **North Pole**
 \[\lambda > 50 \, ^\circ N \]

- **Differences between various indices**
 \[\lambda > 50 \, ^\circ N \]

- **Relationship with the geomagnetic index** \(a_p \) not unique

Graphs and Images

- **RIPX\text{mod} - NP**
- **AUR**
- **AUR**
- **29 Oct 2003**

Color Code

- **\(\Delta TEC \)**
 - \(-3\) to \(-1\)
 - \(-1\) to 0
 - 0 to 1
 - 1 to 3
 - 3 to 4

NTRIP symposium, 6-7 February 2006, BKG, Frankfurt/Main, Germany
Latitudinal gradient index on 7 November 2004

- High latitude latitudinal gradient index is well correlated with error indication of GPS reference networks (NMI)
- Potential for forecasting fixing time problems in reference networks
Outline

- Introduction
- The SWACI service
- Ionospheric impact on GNSS
- The Ionospheric Perturbation Index
- A new ionospheric product distributed via NTRIP?
- Conclusions
Regional Ionospheric Disturbance Index (RIDX)

Suggestion
- Continuous computation of regional perturbation indices
- Provision of the index (indices) to users via NTRIP in near real time streaming mode

Question
- Is there a real interest for such a service?
Possible Solution via NTRIP

NTRIP: Javad/RTCM-RTK Data

NTRIP: Regional Ionospheric Disturbance Index (RIDX)
Summary & Conclusions

- NTRIP technology is the basis for the NRT SWACI service
- Ionospheric perturbations and irregularities can cause severe impact on precise GNSS applications
- A permanent monitoring (nowcast) and forecast of the ionospheric state should help to improve safety and accuracy of GNSS applications
- To better and faster quantify the strength and impact of the ionospheric perturbations on GNSS applications, we propose the introduction of an ionospheric index for operational use in Com/Nav systems.
- The regional index (related to TEC) could effectively be disseminated via NTRIP technology
- To guarantee a broad international usage and comparability of the index we suggest to define ionospheric perturbation indices on an international level (standardization)
Acknowledgement

- The following partners contributed essentially to the results obtained in the projects
 - **SWIPPA** (Space Weather impact on precise Positioning Applications, supported by ESA)
 - **SWACI** (Space weather application center – ionosphere, supported by state government of Mecklenburg-Vorpommern)
 - AllSat GmbH Network + Services, Hannover, Germany
 - LVMV Land Surveying Office of Mecklenburg-Vorpommern, Schwerin, Germany
 - SENSYS Sensorik & Systemtechnologie GmbH, Fuerstenwalde, Germany
 - BKG makes available the real time service via NTRIP

We thank our partners for fruitful cooperation!