Multi-instrument detection in Europe of ionospheric disturbances caused by the 15 January 2022 eruption of the Hunga volcano

Tobias G.W. Verhulst^{1,2} David Altadill³ Veronika Barta⁴ Anna Belehaki⁵ Dalia Burešová⁶ Claudio Cesaroni⁷ Ivan Galkin^{8,9} Marco Guerra¹⁰ Alessandro Ippolito⁷ Themistocles Herekakis⁵ Daniel Kouba⁶ Jens Mielich¹¹ Antoni Segarra³ Luca Spogli^{7,10} Ioanna Tsagouri⁵

¹Royal Meteorological Institute of Belgium ²Solar-Terrestrial Centre of Excellence ³Observatori de l'Ebre ⁴Institute of Earth Physics and Space Science, Sopron ⁵National Observatory of Athens ⁶Institute of Atmospheric Physics, Czech Academy of Sciences ⁷Istituto Nazionale di Geofisica e Vulcanologia ⁸Borealis Global Designs Ltd. ⁹Space Science Laboratory, UMass Lowell ¹⁰SpacEarth Technology ¹¹Leibniz-Institute of Atmospheric Physics

3rd URSI AT-AP-RASC, Gran Canaria, 2022-05-30

The PITHIA-NRF project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101007599

T. Verhulst (RMI/STCE

Multi-instrument TID detection

RSI AT-AP-RASC 2022 1 / 16

Outline

Introduction

Instruments & Data

Observations

- *MUF* and iso-density contours
- Plasma drift
- TEC & in situ measurements

4 Combining results

- TID propagation to Europe
- Timing of TID onset

Conclusions

Two circumstances of the eruption are to be considered:

- The location of the Hunga eruption was at 20.5°S 175.4°W, putting the antipode in northern Africa.
- The timing of the eruption coincided with moderate geomagnetic storms.
- This leads us to two questions:
 - To what extend, and through which mechanisms, do TIDs propagate to Europe?
 - Can the TIDs from this eruption be distinguished from those caused by the geomagnetic disturbances?

We use data from ionosondes and GNSS receivers from west and central Europe, as well as *in situ* measurements from Swarm C passing over the region.

Ionosondes

- We use vertical incidence ionograms from 12 ionosondes, plus oblique ionograms from 4 pairs.
- Sounding cadences vary between five and fifteen minutes.
- All data manually scaled (will be available through GIRO).
- We use *MUF* as well as detrended iso-density contours.
- For some ionosonde we also use plasma drift data.

Problem

At the more northern station, ionisation is very low during winter nights, resulting in some unusable data.

GNSS receivers and Swarm

- A large number of GNSS receivers are used to obtain *TEC* data, covering latitudes between 30° and 70°N.
- Data is detrended using the VARION procedure, with a tenth-order polynomial.
- Large number of data points allows for detailed reconstruction of TID movement.
- Swarm C passed over the region twice.

Observations: MUF and pressure

Major disturbances in *MUF* are seen on January 15 in the afternoon: geomagnetic activity. During the night, two main peaks corresponding to great-circle velocities of 300 m/s and 304 m/s from the eruption. These appear 45 – 60 minutes after the barometer signals arrival of tropospheric disturbances. The period indicate medium scale TIDs.

T. Verhulst (RMI/STCE)

Multi-instrument TID detection

Observations: MUF throughout Europe

The *MUF* obtained from vertical and oblique ionogram traces at various locations shows the waves travelling to and from the eruption antipode. The results are consistent throughout the region (wherever data are available).

Observations: MUF throughout Europe

The *MUF* obtained from vertical and oblique ionogram traces at various locations shows the waves travelling to and from the eruption antipode. The results are consistent throughout the region (wherever data are available).

Observations: iso-density contours

Reconstructed detrended true-height plots for densities from 2.0 to 3.8 MHz. This looks very different from the *MUF* signature:

- a train of oscillations instead of single peaks,
- the disturbance starts around the moment of arrival of the pressure wave.

Observations: plasma drift measurements

of tropospheric disturbances (30-minute smoothed data).

Observations: plasma drift measurements

Observations: GNSS derived TEC

dTEC at the ionospheric pierce points, for longitudes between 12.5° and 17.5°E. Waves travelling southward between 19 and 22 UTC, followed by northward travelling waves. Wave fronts travelling at 310 m/s are indicated.

T. Verhulst (RMI/STCE)

Multi-instrument TID detection

Observations: GNSS derived TEC

dTEC at the ionospheric pierce points for all Italian receivers. Waves travelling southward between 19 and 22 UTC, followed by northward travelling waves. Wave fronts travelling at 310 m/s(\pm 5%) are indicated.

T. Verhulst (RMI/STCE)

Multi-instrument TID detection

In situ electron density

The Swarm C satellite passed the area twice, flying at 435 km

- a pass at 28.9°E between 20:51 and 20:57 UTC,
- a pass at 5.5°E between 22:24 and 22:30 UTC.

Swarm-C pass compared to TEC

The (negative) peak seen in the *in situ* data from the $5.5^{\circ}E$ pass is clearly visible in the GNSS *TEC* as well.

Propagation of disturbances

TIDs caused by the eruption can be distinguished from those of geomagnetic origin by their travel direction and timing by combining data from multiple ionosondes at various distances and in different directions from the source.

Propagation of disturbances

Name	Ursi code	Latitude	Longitude	Distance	Azimuth
Juliusruh	JR055	54.6°N	13.4°E	15,931 km	29.0°
Fairford	FF051	51.7°N	—1.5°E	16,536 km	5.6°
Chilton	RL052	51.5°N	-0.6°E	16,551 km	7.3°
Dourbes	DB049	50.1°N	4.6°E	16,626 km	17.2°
Pruhonice	PQ052	50.0°N	14.6°E	16,326 km	34.3°
Sopron	SO148	47.6°N	16.7°E	16,443 km	39.9°
Rome	RO041	41.9°N	12.5°E	17,148 km	39.3°
Roquetes	EB040	40.8°N	0.5°E	17,707 km	13.7°
San Vito	VT139	40.6°N	17.8°E	16,940 km	50.3°
Athens	AT138	38.0°N	23.5°E	16,694 km	62.3°
Gibilmanna	GM037	37.9°N	14.0°E	17,384 km	48.1°
El Arenosillo	EA036	37.1°N	-6.7°E	18,158 km	353.19°

TIDs caused by the eruption can be distinguished from those of geomagnetic origin by their travel direction and timing by combining data from multiple ionosondes at various distances and in different directions from the source. The travel times for the onset of the TIDs are consistent between 300 m/s and 310 m/s, seen in both ionosonde observations and *TEC* data.

This is consistent with TIDs produced locally from disturbances travelling through the troposphere.

However, the *MUF* and iso-density contours obtained from ionograms disagree in the delay between the tropospheric pressure wave and the start of the ionospheric disturbance. Also, *MUF* shows a single larger peak while the density contours and *TEC* shows multiple periods of similar amplitude.

Based on the timing, this is probably due to respectively acoustic and gravity waves arriving in the ionosphere with different delays.

- TIDs caused by the eruption can be distinguished from those of geomagnetic origin by their size and travel direction.
- Ionospheric effects seen in Europe are probably produced by disturbances propagating through the troposphere.
- If or the most part, different data sets are in good agreement.
- MUF time series show something different from TEC and electron density, possibly detecting different types of waves.

The end, thank you!

Paper submitted to *Journal of Space Weather and Space Climate*, currently being revised; preprint: doi:10.1002/essoar.10510837.2.