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Abstract

GALOCAD project ‘‘Development of a Galileo Local Component for the nowcasting and forecasting of atmospheric disturbances
affecting the integrity of high precision Galileo applications” aims to perform a detailed study on ionospheric small- and medium-scale
structures and to assess the influence of these structures on the reliability of Galileo precise positioning applications. GPS-derived TEC
(total electron content) is obtained from the Belgium Dense Network (BDN), consisting of 67 permanent GPS stations. An empirical 3-D
model is developed for studying these ionospheric structures. The model, named LLT model, described temporal variations of TEC in
latitude/longitude frame (46�, 52�)N and (�1�, 11�)E. The spatial variations of TEC are modeled by Tchebishev base functions, while the
temporal variations are described by a trigonometric basis. To fit the model to the data, the observed area is divided into bins with
(1� � 1�) geographic scale and 6 min on time axis. LLT model is made flexible, with varying number of coefficients along each axis. This
allows different degree of smoothing, which is the key element of the present approach. Model runs with higher number of coefficients,
capturing in details medium-scale TEC structures are subtracted from results obtained with smaller number of coefficients; the latter
represent the background ionosphere. The residual structures are localized and followed as they travel across the observed area. In this
way, the size, velocity, and direction of the irregular structures are obtained.
� 2008 COSPAR. Published by Elsevier Ltd. All rights reserved.

Keywords: MSTIDs; GPS positioning; TEC modeling; Ionospheric disturbances
1. Introduction

The ionospheric irregularity structures are known to
propagate away from their areas of origin, driven by atmo-
spheric gravity waves. The moving ionospheric structures
are known also as Travelling Ionospheric Disturbances
(TIDs). In respect to their spectral parameters, TIDs are
divided into three main groups: large-scale TIDs with a
wavelength more than 500 km and period of 0.5–3.0 h
and middle-scale TIDs (MSTIDs) with a wavelength of
50–500 km and periods 0.2–1.0 h. The other group repre-
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sents the smallest scale size TIDs (SSTIDs) with a wave-
length less than 50 km and period of several minutes.

MSTIDs have horizontal phase speed of 100–300 m/s
and occur more frequently than LSTIDs. Their generation
is not well understood, although many possible mecha-
nisms have been proposed, such as orographic effects (Beer,
1974), wind shear (Mastrantonio et al., 1980), solar termi-
nator (Beer, 1978; Somiskov, 1995), tropospheric effects
(Bertin et al., 1978), breaking of atmospheric tides (Kelder
and Spoelstra, 1987), etc. All these mechanisms do not
include geomagnetic activity as a primary driver, although
some non-linear interactions with LSTIDs are also
assumed (Beach et al., 1997).

MSTIDs have been measured by various techniques, such
as ionosondes (Bowman, 1990), HF Doppler (Waldock and
rved.
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Fig. 1. Data inferred from GPS satellites in view between 15:00 and
15:06 UT on day 359 (Dec, 24) of 2004. Magnitude of data points is color
coded, with 256 levels of spectra from blue to red. Visual inspection of the
lat/long plots is an essential part of the analysis. TEC in units 1016 cm.
(For interpretation of the references in colour in this figure legend, the
reader is referred to the web version of this article.)
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Jones, 1987), satellite beacon (Evans et al., 1983), ground
radar (Ogawa et al., 1994) and airglow imaging (Shiokawa
et al., 2003). Comprehensive reviews on atmospheric gravity
waves and mesoscale ionospheric disturbances are given by
Hunsucker (1982), Whitehead (1989) and Mathews (1998).
GPS-derived TEC, in particular, has proven to be most
useful in studying those disturbances, which affect the GPS
positioning accuracy. There are two main approaches to
MSTID studies: single station time series analysis and image
recognition analysis. First approach is well developed by
Warnant (1998), Warnant et al. (2000, 2007) and Hernan-
dez-Pajares et al. (2005, 2006). Second approach, used by
Kodake et al. (2006) and Otsuka and Amaraki (2006), is
based on the data inferred from the dense Japanese GPS
network, containing more that 1000 dual-frequency receiv-
ers within Japan territory. These authors identified MSTIDs
visually on the instant TEC maps and extracted their size and
propagation parameters by tracing the structures as the time
develops.

The present paper describes a new approach for study-
ing MSTIDs, developed in framework of the project
GALOCAD: ‘‘Development of a Galileo Local Compo-
nent for the nowcasting and forecasting of atmospheric dis-
turbances affecting the integrity of high precision Galileo
applications”. This project aims to perform a detailed
study on ionospheric small- and medium-scale structures
and to assess the influence of these structures on the reli-
ability of Galileo precise positioning applications. GPS-
derived TEC (total electron content) is obtained from the
Belgium Dense Network (BDN), consisting of 67 perma-
nent GPS stations. Here, TEC data, obtained from all
GPS satellites in view during a certain time window is
approximated by 3-D polynomial along latitude, longitude
and time axes. Depending on the order, polynomial can
capture disturbances with different size: low-order polyno-
mials smooth out ionospheric disturbances, while higher
order polinomials can capture localized TEC structures.
The present approach subtracts low- from higher-order
approximations to localize disturbance structures and fol-
low their movement across the area. This paper describes
the general approach, theoretical backgrounds and shows
samples of model performance and dynamics of some
localized TEC structures.

2. Data

Although GPS satellites can be viewed in a larger area,
we constrain our analysis to the area (46�, 52�)N latitude
and (�1�, 11�)E longitude. Fig. 1 presents TEC data gath-
ered between 15:00 and 15:06 UT on day 359 (December
24) of year 2004. The color scale is shown on the right.
The magnitude of data points is color coded, with 256
levels of spectra from violet to red. Five spots of data
are seen, each representing BDN, seen from each of the
five satellites in view. Note that two of the spots in the
center of the mapping area are partially overlapped and
show different TEC values. It is obvious that at any
instant, a substantial part of the area does not contain
data. To make a reliable fitting, we have to divide the area
into proper number of sub-areas and accumulate data in
them over certain time periods. We varied the size of
sub-areas and time width in numerous combinations in
order to optimize the size of the 3-D (latitude, longitude,
and time) bins. The smaller is the bin size, the smaller is
the size of disturbances that can be localized. The optimi-
zation procedure was interplay between two requirements:
smaller bin size and the availability of data in the bins. We
found that best combination is to use bins with size 1� � 1�
geographic scale and 6 min on time scale. This time scale is
convenient for studying the middle-scale disturbances,
because it is enough shorter than characteristic period
(around 20 min) of the MSTIDs. The number 6 allows also
presenting the time width as decimal part of the hour. To
make a proper fitting of the data with analytical functions,
we need to have data in all bins. In our case, the number of
filled bins for every 6-min period is approximately 18% of
total number of bins in the area. As will be show below,
empty bins will be filled by a special algorithm by neigh-
boring non-empty bins.

3. LLT model

As mentioned in Introduction, the present approach of
studying MSTIDs requires approximation of acquired
TEC data from BDN by analytical functions along the lat-
itude, longitude and time. For convenience, we denote the
approximation algorithm Latitude, Longitude, Time
(LLT) model, although it is not yet a full-featured model.
TEC data acquired from the area are approximated by a
3-D function, as the latitude and longitude variations are
approximated by polynomials (Tchebishev’s base func-
tions), while for the time variations are used trigonometric
functions (trigonometric base functions). This approach
has been used in a number of empirical models (Marinov
et al., 2004a,b; Kutiev et al., 2006; Kutiev and Marinov,
2007) and proved to represent accurately the observed data.
The error assessment of the LLT model will be given below.
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We use an analytic representation of the data by a func-
tion of three variables (LAT, LONG, TIME) = (x1, x2, t);
x1 in the range [46,52], x2 in the range [�1,11] and t in the
range [0, 24]. We denote the number of coefficients related
to the variables x1, x2, and t as N1, N2 and N3, respec-
tively. The analytic representation of the data is a polyno-
mial of the type:

F ðx1; x2; x3; CÞ ¼

�
XN1

i1¼1

XN2

i2¼1

XN3

i3¼1

cði1; i2; i3ÞB1ði1; x1ÞB2ði2; x2ÞB3ði3; tÞ

The data along variables x1 and x2 are approximated by
Tchebishev base functions and the time variations are
approximated by trigonometric basis. We denote with T

the time range in which data are approximated. For the
time range T = 24 h, we use a trigonometric basis contain-
ing sine and cosine functions, while for shorter time ranges
(T < 24 h) we use cosine functions only. The reason for this
is the fact that the time range T = 24 h contains diurnal
variations of TEC and the pair of sine and cosine functions
better approximate the data, while for the shorter time
ranges cosine approximation is enough accurate. Approxi-
mation in different time ranges is explained in details later
in the paper. We make substitutions in order to fit variables
x1 and x2 in the interval [�1,1] and x3 in interval [0, 2p] for
T = 24 h, and [0,p] for T < 24 h:

u1 ¼ �1þ x1� 46

52� 46
2 ¼ �1þ x1� 46

3

u2 ¼ �1þ x2þ 1

12
2 ¼ �1þ x2þ 1

6

u3 ¼ ðt � T 0Þ
T

2p for T ¼ 24 h and

u3 ¼ ðt � T 0Þ
T

p for T < 24 h

Time variations are approximated by trigonometric basis:
{B3(i3,t)} = {1, sin (u3), cos (u3), sin (2.u3), cos (2.u3)},

...
for the T = 24 h model and
{B3(i3,t)} = {1, cos (u3), cos (2.u3)}, ...
for the shorter model, T < 24 h.
The variables x1 and x2 are approximated by Tchebi-

shev’s base functions:{B1(i1,x1)} = {T0 (u1) = 1, T1 (u1) =
u1, ... s, Tk (u1) = 2.u1Tk - 1 (u1) - Tk - 2 (u1), ...}, i.e Tk

(u1) = cos (k.arccos (u1))B2(i2,x2) is obtained similarly
to B1 by replacing i1, x1 and u1 with i2, x2, u2, respec-
tively.C = {c(i1, i2, i3)|i1 = 1, ...N1; i2 = 1, ... N2; i3 = 1,
...N3}.Solutions of the LSQ approximation is by
minimizing:

XN

k¼1

ðf ðkÞ � F ðx1ðkÞ; x2ðkÞ; tðkÞ; CÞÞ2;

where fx1ðkÞ; x2ðkÞ; tðkÞ; f ðkÞgN
k¼1 are data which we

approximate. In domains with large gradients of the data,
a Gibbs effect takes place (i.e. close to the area of the jump
of the data the approximation achieves values greater than
the maximal measured data and less than minimal one). To
avoid this unacceptable effect, instead of approximating the
function f(k), we approximate the function g(k) = lg(f(k)).
In this case the approximated function is G(k) and
F ðkÞ ¼ 10GðkÞ.

3.1. Filling the empty bins

To constrain the approximation in acceptable limits, we
assign values to the empty bins by using the following pro-
cedure. We average first the measured TEC values in each
non-empty bin. Every bin, except those at the boundaries,
has 25 neighbor bins. We choose at first round the empty
bins, which have at least 20 non-empty neighbors and
assign to each of them values, being average of all neigh-
bor’s averages. Considering the newly filled bins non-
empty, procedure repeats the filling until no empty bins
exist with 20 non-empty neighbors. The second round we
consider those empty bins having 19 non-empty bins and
each next round procedure reduces the number of required
non-empty bins by one. Practically, 5–6 rounds are enough
to fill all empty gaps in the 24 h time range.

We found that it is better to use both individual data
and bin averages in the fitting procedure, giving some pref-
erence to the average values in the bins. This preference
depends on the time range T and the number of coefficients
N1 and N2. We found that for T = 24 and the number of
spatial coefficients 3–5, best result was obtained (lowest
standard deviation of model from data) when a weight of
66 is assigned to the average values. So, the best combina-
tion is to fit the model over the measured data and
weighted average in the bins.

4. Model performance

We show LLT model performance for TEC data
acquired on day 359 (24 December) 2004. We varied the
values of N1, N2 and N3 and assessed the performance
of the model by the root mean square (RMS) deviation
of model from the data. The model approximation with a
defined set of coefficients is denoted as ‘‘model
(N1,N2,N3)”, for example, ‘‘model (3,3,03)” denotes a
model approximation with N1 = 3, N2 = 3 and N3 = 03
(time coefficients can be greater than 10). Approximating
the time variations, we use two different time ranges: the
whole day (T = 24 h) and short range (T is less than 2 h).
Both ranges have their own applications and will be
described separately.

4.1. Approximations with time range T = 24 h

Fig. 2a is a model (5, 5,21) representation of the data
shown in Fig. 1 in 1� � 1� spatial grid size. Model presen-
tation looks better when the model is shown in smaller
grids, as it is in Fig. 2b. Here, grid size is 0.2� � 0.3�.
Two structures are well localized: a maximum at 49�N



Fig. 2. (a) Model (5,5,21) representation of the data shown in Fig. 1,
using bin size 1 � 1. (b) Model (5,5,21) representation of the data shown
in Fig. 1, but using bin size 0.2 � 0.3.

Fig. 3. (a) Top panel: TEC data acquired the bin [49,50]N and [3,4]E
during the whole day 359 of 2004, is approximated by a model (5,5,11).
Multiple curves are obtained by shifting lat and long by 0.2� inside the bin.
Bottom panel: deviations of model from the data in TECU. (b) The same
data as in Fig. 5a, but approximated by the model (5,5,21).
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and 9.5�E and a minimum at 50.5�N and 5�E. It is seen that
the minimum is visible in the data from Fig. 1, while the
maximum is found at a place where there are no data in
this time interval. In this case, the model values are deter-
mined by the data from other time intervals.

It is expected that the approximation of time variations
in T = 24 range is most important for the model perfor-
mance. To give an idea how models with increasing N3
approaches the data, we show in Fig. 3a and b TEC data
taken from the bin [49, 50]N and [3, 4]E as function on
time. The upper panels show model approximation (red
squares) and data (blue dots) during the whole day
(T = 24 h). The left panel represents the model (5, 5,11)
and the right panel shows the model (5,5,21). The lower
panels show respective deviations of model values from
the data. Multiple curves represent the model every 0.2�
inside the bin. Note, that the spread of model curves are
not constant during the day, it depends on data configura-
tion. This is an effect of small-scale structures in the data,
not visible in the figure. The difference between the two
approximations is well seen: the model (5, 5,21) approxi-
mates better data variations.
4.2. Approximations with shorter time ranges T

As was pointed out above, approximations over the
whole time range of 24 h require higher values of N3 and
consequently, more computer resources. For MSTID stud-
ies in particular, the time range could be much smaller, but
larger than 20 min (upper period limit). We run the model
with two time ranges: T = 48 min and T = 96 min. To cover
the whole day, the model was prepared to slide the time
range starting from the beginning of the day, with a time
shift of 6 min. The model value at any given moment is com-
posed by the values of sequential short-range models, cov-
ering the given moment. For example, for models with
T = 96 min, the model value at 10:02 h is composed by
respective values from short-range models (08:30–10:02)
(08:36–10:12), . . . (10:00–11:36), or totally from 16 models.
The different values are weighted by a factor, reversely pro-
portional to the time difference between their centers.
Therefore, the model value at the moment 10:02 is an aver-
age of all weighted contributions. The same example, but



Fig. 4. Top panel: small dots represent individual model runs for
approximation (3,3,03), with time range T = 96 min and time shift of
12 min. Blue curve is the weighted average from model runs in the range.
Bottom panel: The model runs in top model are augmented in the time
frame 10–12 UT. (For interpretation of the references in colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 5. Data (green dots), bin averaged (step-like curve), short-range
model (red dots) and weighted model curve (blue curve) for the bin
[49,50]N and [3,4]E. (a) model approximation (3,3,05); (b) model
approximation (5,5,05). (For interpretation of the references in colour
in this figure legend, the reader is referred to the web version of this
article.)
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for the time range T = 48 min, the number of models,
including the moment 10:02 are 8 (from 09:18 to 10:00).

Similar to Fig. 3, we represent in Fig. 4a the model
approximation (3,3,03) with T = 95 min and time shift
12 min. The blue curve is the average of weighted individ-
ual model runs (red dots) and time shift 12 min. For better
visualization, Fig. 4b augments the model curves of Fig. 4a
within the period 10–12 UT. The individual short-range
models, with several exceptions between 11:00 and 11:30,
form a distinctive band around the main course of TEC
variation. Note that the shorter T does not require high
N3; here N3 = 3.

Increasing coefficients N1 and N2 also yields better
approximations. Fig. 5 represents model curves (red lines)
composed by short-range (T = 96 min) models (3,3,05) in
the upper panel and (5,5,05) in the bottom panel, for the
same bin [49, 50]N and [3,4]E, as above. For comparison,
the green dots show the data and the step-like curve repre-
sents the average values (including the filled in) in the bins.
Note, that the average models do not follow closely bin aver-
ages. It is clear that the model approximation (5, 5,05) is clo-
ser to the data than approximation (3, 3,05). We have found
that the model performance is improved, when we increase
N1,N2, along with N3, as they depend on each other.
5. Localizing TEC disturbances

The key element of the proposed approach is the use of
the LLT model for localization of TEC disturbances. As
was shown above, higher order polynomials (larger num-
ber of coefficients) capture more details of the irregular
structure of TEC, than the lower order polynomials. We
subtract a pair of short time range models with slightly dif-
ferent number of coefficients and suppose that the residuals
represent local disturbances.

Fig. 6 shows the difference between short time range
models (T = 96 min) in latitude/longitude frame for
16:30 UT. Upper plot shows the difference between models
(3,3,3) and (5, 5,3), and the lower plot shows the difference
between models (5, 5,5) and (5,5,3). Models with
N1 = N2 = 3 approximate latitude and longitude with
parabolas, which can make one extreme only. The struc-
ture shown on the upper panel has several extremes
stretched from northwest to southeast. Obviously, this
structure is produced by the difference of spatial approxi-
mations. Spatial approximation in this case modulates
the magnitude of the structures, defined by the temporal
approximation. Because the temporal approximation has
trigonometric basis, N = 3 means two waves: the basic,
with period of 96 min and its first harmonic, with period
of 48 min. The lower panel represents the difference
between models, having the same spatial approximation,
but the spatial surface is described by a polynomial of
4th degree, capable of capturing three extremes. The struc-
ture is similar to that of the upper plot, but less expressed.
Playing with higher order spatial polynomials, we found
that the structures become less and less expressed. It is rea-
sonable to assume that both, the spatial and temporal



Fig. 6. Difference between short time range models (T = 96 min) at
16:30 UT. Top:(3,3,3)–(5,5,3); bottom: (5,5,3)–(5,5,5).
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structures are coupled and characterized the size and dura-
tion of real disturbances.

Fig. 7 shows a sequence of 8 plots representing the dif-
ference between the models (3,3,3) and (5,5,3) from
16:18 to 17:00 UT, with a step of 6 min. The upper plot
of Fig. 6 is one of sequential plots here. As was mentioned
above, two maximums and two minimums are stretched in
northwest-southeast direction. The sequence shows certain
dynamics, mainly as a change in magnitude.
6. Discussion

For studying MSTIDs, we developed a model, based in
a multivariable polynomial. The model approximates TEC
data received from Belgian Dense Network (BDN) along
latitude, longitude and time axes. The key elements of the
model approach are the residuals obtained by subtraction
of low order from higher order approximations. Higher
order polynomials capture more detailed structures than
those of lower order. Subtracting the two model values,
we actually localize those disturbances, captured by higher
order polynomial. This approach allows tracking the local-
ized disturbances as they move across the area and thus
estimate their direction and speed.

Important question is whether residuals represent the
real disturbed structure of TEC. It could be possible that
higher order polynomials form false extremes or large gra-
dients at the borders. Our experience, gathered from
numerous runs of the model, proves that this is not quite
probable. From the general considerations, we conclude
that the model can express extremes over the data only.
In the areas without data, the bin averages form smoothed
distribution and both, lower and higher order models
would make the same fit. That is, their residuals would
be with negligible magnitude. Because the averages weight
66 times more than individual data, the model can form an
extreme if the number of data points in the bin consider-
ably exceeds 66. Another indirect evidence of capturing
real disturbances comes from the time development of
localized structures. Fig. 7 shows that localized structures
are sustainable and develop with time. Their behavior
looks physically meaningful. The main conclusion that
can be drawn is that localization is sustainable indepen-
dently of the different approximations.

The size of localized structures is determined by residu-
als and does not represent the real size of disturbances, if
we consider the latter as deviation from monthly median
or average. We can consider the localized structures as
top cuts of the existing disturbances, around their
extremes. While the size is not significant parameter in
the analysis, the change of magnitude, speed and direction
are important for studying MSTIDs.

We studied extensively the RMS error as an estimate for
assessing the model performance. RMS error, calculated
over the whole day 359 of 2004, varies between 1 and 2
TEC units (TECU). In long models (T = 24), RMS error
varies between 1.4 for N3 = 25 and 1.8 for N3 = 13.
Increasing or decreasing N1 and N2 yields a reverse change
of RMS error. For short models, RMS error is more sensi-
tive to N1 and N2, than to N3. For models with
N1 = N2 = 3, RMS error is around 1.5, and decreases to
1.2 for N1 = N2 = 5. It looks surprising that for the short
models, RMS error is less sensitive to N3 than to N1 and
N2. As was shown in Fig. 6, local disturbances are better
expressed when subtract models with N1 = N2 = 3 than
in the case with five coefficients. Indeed, for a fixed number
of spatial coefficients, RMS error slightly decreases with
increasing N3 and this decrease is stronger for lower order
spatial approximation. This effect actually explains the
fact, seen in Fig. 6, that model difference with
N1 = N2 = 3 better localizes disturbances. The larger is
the RMS error difference, the better disturbances are
expressed. In this sense, subtracting models with different
spatial coefficients localize better the disturbances.
7. Conclusions

We utilized a new approach for studying MSTIDs.
TEC, derived by Belgium Dense GPS Network from an
area 6� � 12� geographic scale during specified time inter-
vals, is approximated by 3-D polynomials of different
order. The residuals, after subtracting approximations of
lower order from higher order polynomials, are considered
representative of local density disturbances. Corresponding
software is named LLT (Latitude, Longitude, Time)
model. In the present paper we provide theoretical formu-
lations and samples of model performance. We believe that
the present results give enough evidence of reliability of the



Fig. 7. Eight successive plots of difference between (3,3,3) and (5,5,3) models. The sequence starts at 16:18 UT from upper left column, with 6min step, to
the bottom right column. Time is marked at upper right of each plot.
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proposed approach. Further work is planned for its verifi-
cation and accuracy assessment.
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