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1. Introduction 
 

 

The ionospheric irregularity structures are known to propagate away from their areas of origin, driven 
by atmospheric density waves (Rawer, 1993). The moving ionospheric structures are known also as 
Travelling Ionospheric Disturbances (TIDs). TIDs are divided, according to their spectral parameters, 
into three main groups: large-scale TIDs with a wavelength more than 500 km and period of 0.5-3.0 
hours and middle-scale TIDs (MSTIDs) with a wavelength of 50-500 km and periods 0.2-1.0 hours. 
The other group represents the smallest scale size TIDs (SSTIDs) with a wavelength less than 50 km 
and period of several minutes. MSTIDs have horizontal phase speed of 100-300 m/s and occur more 
frequently than LSTIDs. Their generation is not well understood, although many possible mechanisms 
have been proposed. All these mechanisms do not include geomagnetic activity as a primary driver, 
although some non-linear interactions with LSTIDs may also be assumed.  

 

The great variety of sizes and periods makes identification and studies of irregularities effective in 
degrading GPS positioning accuracy difficult. The aim of WP 310 is to define the main characteristics 
of irregular TEC structures by approximating them with analytical functions, reveal their size and 
motion and then correlate these quantities with solar and geophysical parameters. The mathematical 
modeling is made possible through the use of the Belgian Dense Network (BDN) which consists of 67 
permanent GPS stations. TEC data, obtained from all GPS satellites in view during a certain time 
window is approximated by 3-dimensional polynomial along latitude, longitude and time axes. 
Depending on the order, polynomial can capture disturbances with  different size: low-order 
polynomials smooth out ionospheric disturbances, while higher order polinomials can capture localized 
TEC structures. The present approach subtracts low-order from higher-order approximations to localize 
disturbance structures and follow their movement across the area. 

 

The present report summarizes activities and results obtained in completeing the WP tasks. Section 2 
describes the way the database is compiled. Sections 3 provides the basic formulation of  the so-called 
Latitude-Longitude-Time model (further denoted as the LLT model). Section 4 describes the main 
charactristics of the LLT model and its performance. Both, the long-term and short-term models are 
described in detail together with the evaluation of the model error, i.e. the standard deviation between 
the model results and the data. Section 5 provides the methodology of localizing ionospheric 
disturbances by using residuals from pairs of models with different degrees of polynomials and 
discusses the realibility of the results. Section 6 introduces a new method for spectral analysis of 
detected irregularities and shows how their spectral characteristics can be obtained. This question is 
further elaborated in Section 7 where the correlation of modeled disturbances and geomagnetic and 
solar activity indices is investigated. The last section 8 summarizes the results..  

 

It has to be noted that the LLT model, localization technique and spectral analysis are original results, 
not yet published. 
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2. Compiling the database 
 
The visual inspection of the lat/long plots is an essential part of the analysis. Figure 1 shows TEC data 
derived from GPS satellites in view between 11:00 and 12:00 UT on December 2, 2004 (Day 359). The 
magnitude of each TEC value is color coded and placed at coordinates where the respective signal ray 
path pierces the height of 400 km. The map area is framed in [-10°, 20°]E and [42°, 57°]N geographic 
scale. Further in the text, the “grad symbol” (°) will be omitted. The color scale is shown on the right, 
with 256 levels of spectra from blue to red. At least eight spots of data are seen in Figure 1, each 
representing a projection of BDN on ionospheric surface, seen from each of the eight satellites in view, 
and traced continuously during that hour. Although the data coverage is fragmented, the irregular 
structure is clearly seen. It is obvious that at any instant, a substantial part of the area does not contain 
data. To make a model over the data, we have first to divide the whole area into proper number of 
subareas (bins) and define the time period, during which enough data are accumulated in each bin. 
Then form time series of data in each bin. From the physical point of view, we need to detect 
irregularities as smallеr in size, as possible, while the reliable modeling needs sufficient amount of 
data. We have to find a proper compromise between the two requirements: smaller bin size and 
statistical sufficiency of the data.  
 
 

 
Figure 1: Data inferred from GPS satellites in view between 10:00 and 11:00 UT on December 24, 

2004 (Day 359). TEC magnitudes (color-coded, units of 1016/cm2) given at the ionospheric 
piercing points . 

 
 

Figure 2 shows the number of TEC values (vertical bars) sorted in bins with size 2x2 and 1x1 
accumulated within the same hour as in Figure 1. While in the larger (2x2) bins the number of 
accumulated data is roughly twice larger that in the smaller-size (1x1) bins, the area with non-empty 
bins remains almost the same. The non-empty bins are clustered in the central part of the mapped area.  
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Figure 2: Number of TEC values (vertical bars) accumulated between 10:00 and 11:00 UT in each bin with size 2x2 (panel 

A) and size 1x1 (Panel B).  
 
The following Figure 3 summarizes better the dynamics of filling the bins. The abscissa shows the 
percentage of non-empty bins (having more than 5 values) relative to the all 480 bins in the area 
considered. The upper plot shows the average filling rate from 10:00 UT, as a starting moment for 
accumulation, until 11:00 UT. At first 30 sec filled are 16% of larger bins and only 6% of the smaller 
bins. After an hour, filled are 45% and 32% respectively. The lower plot gives the same dynamics 
augmented in first 6 min, from 10.0 to 10.1. It is seen that the filling rate changes at a time lag of 6 min 
(0.1 hour). These estimates are roughly valid for the whole day 359 of 2004.  
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Figure 3: Percentage of non-empty bins relative to the all bins with size 2x2 (blue line) and 1x1 (red line). Accumulation 

starts accounting from 10.00 UT. Above:  filling dynamics during the whole hour; below: filling in the first 6 min.  
 
Based on the results presented in Fig. and Fig.3, we can optimize the database collection by 
significantly reducing the map area down to the frame [46, 52]N and [-1, 10]E, redefining the time 
accumulation (time step) to 6 min (0.1 hour), and selecting the smaller bin size 1x1. Thus we obtained 
that for the reduced area the rate of filling curves increases around 3 times, in proportion to those of 
Fig.3. For the smaller bin size, at 10:00 UT the filling starts from 20%, after 6 min reaches 40% and at 
the end of the hour approaches 67%. The reduced area significantly improves the availability of data, 
but still, a large part of the latitude/longitude/time space remains uncovered. The lack of sufficient data 
in the bins makes the task of modeling MSTID dynamics rather difficult. However, we avoid this 
disadvantage by introducing a special procedure of artificially filling the empty bins. In our modeling 
approach the irregular ionospheric structures are presented by the residuals from a pair of model 
approximations using polynomials of different degrees. Subtraction of the model pairs eliminates the 
effect of artificially filled bins; irregular structures are revealed by the measured data only. 
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3. LLT model 
 
       3.1 Basic formulation 
 
As mentioned in Introduction, the present approach of studying MSTIDs requires approximation of 
acquired TEC data from BDN by analytical functions along the latitude, longitude and time. For 
convenience, we denote the approximation algorithm as the Latitude-Longitude-Time (LLT) model, 
although it is not yet a full-featured model. We use an analytic representation of the data as a function 
of 3 variables (LAT, LONG, TIME) = (x1, x2, t); where x1 is in the range [46, 52], x2 is in the range [-
1, 11] and t is in the range [0, 24]. We denote the number of coefficients related to the variables x1, x2, 
and t as N1, N2 and N3 respectively. The analytic representation of the data is a polynomial of the 
following type: 
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The time variations are approximated on a trigonometric basis: 

 for the standard-period (T=24h) model and }),3.2cos(),3.2sin(),3cos(),3sin(,1{)},3(3{ KuuuutiB =
}),3.2cos(),3cos(,1{)},3(3{ KuutiB =  for the short-period (T<24h) model, T<24h. 

 
The variables x1 and x2 are approximated by Tchebishev base functions: 

}),1()1(1.2)1(,,1)1(,1)1({)}1,1(1{ 2110 KK uTuTuuTuuTuTxiB kkk −− −====  , i.e. 
))1arccos(.cos()1( ukuTk =  

 
B2(i2,x2) is obtained similarly to B1 by replacing i1, x1 and u1 with i2, x2, u2 respectively. 
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where  are data which we approximate. In domains with large gradients of 
the data, the Gibbs effect  takes place (i.e. close to the area of the jump of the data the approximation 
achieves values greater than the maximal measured data and less than minimal one). To avoid this 
unacceptable effect, instead of approximating the function f(k), we approximate the function 
g(k)=lg(f(k)). In this case the approximated function is G(k) and . 

N
kkfktkxkx 1)}(),(),(2),(1{ =

)(10)( kGkF =

      3.2 Filling the empty bins 
 
To constrain the approximation in acceptable limits, we assign values to the empty bins by using the 
following procedure. We average the measured TEC values in each non-empty bin. Every bin, except 
those at the boundaries, has 26 neighbor bins. In the first round, we choose the empty bins which have 
at least 20 non-empty neighbors and assign to each of them values, being average of all neighbor’s 
averages. Considering the newly filled bins non-empty, procedure repeats the filling until no empty 
bins exist with 20 non-empty neighbors. In the second round, we consider those empty bins having 19 
non-empty bins and each next round procedure reduces the number of required non-empty bins by one. 
Practically, 5-6 rounds are enough to fill all gaps in the 24 hours time range. We found that it is better 
to use both individual data and bin averages in the fitting procedure, thus giving some preference to the 
average values in the bins. This preference depends on the time range T and the number of coefficients 
N1 and N2. We found that for T=24 and the number of spatial coefficients 3 to 5, the best result was 
obtained (lowest standard deviation of model from data) when a weight of 66 is assigned to the average 
values. So, the best combination is to fit the model over the measured data and weighted average in the 
bins. 

4. Model performance 
 
We show LLT model performance for TEC data acquired on 24 December 2004 (day 359). We varied 
the values of N1, N2 and N3 and assessed the performance of the model by the root mean square 
(RMS) deviation of model from the data. The model approximation with a defined set of coefficients is 
denoted as “model (N1, N2, N3)”, for example, “model (3, 3, 3)” denotes a model approximation with 
N1=3, N2=3, and N3=3 (time coefficients can be greater than 10). Approximating the time variations, 
we use two different time ranges: the whole day (T=24 hours) and short range (T is less than 2 hours). 
Both ranges have their own applications and will be described separately. 

4.1 Approximations with time range T=24 hours 
 
The top panel of Fig.4 is a model (5, 5, 21) representation of the data shown in Fig.1 in 1°x1° spatial 
grid size. The model presentation looks better when the model is shown in smaller grids, as in the 
bottom panel of Fig.4. Here the grid size is 0.2° x 0.3°. Two structures are well localized: a maximum 
at 49°N and 9.5°E and a minimum at 50.5°N and 5°E.  It is seen that the minimum is visible in the data 
from Fig.1, while the maximum is found at a place where there are no data in this time interval. In this 
case, the model values are determined by the data from other time intervals. 
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Figure 4: Model (5, 5 ,21) representation of the data shown in Fig. 1, using bin size 1ºx1º (top panel) and bin size 0.2º x 
0.3º (bottom panel). 

 
It is expected that the approximation of time variations in the range of T=24 is most important for the 
model performance. To give an idea how models with increasing N3 approaches the data, we show 
(Fig.5) the TEC data taken from the bin [49, 50]N and [3, 4]E as a function of time. Fig.5A represents 
the model (5, 5, 11) and Fig.5B represents the model (5, 5, 21). The upper panels of Fig.5A and Fig.5B 
show model approximation (red squares) and data (blue dots) during the whole day (T=24 hours). The 
lower panels show respective deviations of model values from the data (TEC error). Multiple curves 
represent the model every 0.2º inside the bin. Note, that the spread of model curves in not constant 
during the day, it depends on data configuration. This is an effect of small-scale structures in the data, 
not visible in the figure. The difference between the two approximations is well seen: the model 
(5,5,21) approximates better data variations.  
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 Figure 5: (Fig.5A): TEC data acquired the bin [49, 50]N and [3, 4]E during the whole day 359 of year 2004 as 
approximated by a model (5, 5, 11). Multiple curves are obtained by shifting Lat and Long by 0.2º inside the bin. 
Bottom panel: The model deviations from the data (TEC error) in TECU are given in green Color. (Fig.5B): the 
same as in Fig.5A but using the model (5,5,21). 
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4.2 Approximations with shorter time ranges T<24h 
 
As was pointed out above, approximations over the whole time range of 24 hours require higher values 
of N3 and consequently, more computer resources. For MSTID studies in particular, the time range 
could be much smaller, but larger than 20 min (upper period limit). We run the model with two time 
ranges: T=48 min and T=96 min. To cover the whole day, the model was prepared to slide the time 
range starting from the beginning of the day, with a time shift of 6 min. The model value at any given 
moment is composed from the values of sequential short-range models, covering the given moment. 
For example, for models with T=96 min, the model value at 10:02 hours is composed by respective 
values from short-range models (08:30-10:02), (08:36-10:12),….(10:00-11:36), or totally from 16 
models. The different values are weighted by a factor, reversely proportional to the time difference 
between their centers. Therefore, the model value at the moment 10:02 is an average of all weighted 
contributions. The same example, but for the time range T=48 min, the number of models, including 
the moment 10:02 are 8 (from 09:18 to 10:00).  
 
Similarly to Figure 5, we represent in Figure 6a the model approximation (3, 3, 3) with T=96 min and 
time shift 12 min. The blue curve is the average of weighted individual model runs (red dots) and time 
shift 12 min. For better visualization, Figure 6b augments the model curves of Figure 6a in the time 
frame 10-12 UT. The individual short-range models, with several exceptions between 11:00 and 11:30, 
form a distinctive band around the main course of TEC variation. Note that the shorter T does not 
require high N3; here N3=3.  

 

 
 
Figure 6: Panel A: Small dots represent individual model runs for approximation (3,3,03), with time range T= 96 min 

and time shift of 12 min. Blue curve is the weighted average from model runs in the range. Panel B: the same 
as in Panel A but the model runs in Fig. 8a are augmented in the time frame 10-12 UT 
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Increasing coefficients N1 and N2 also yields better approximations. Figure 7 represents model curves 
(red lines) composed by short-range (T=96 min) models (3,3, 05) in the upper panel and (5,5,05) in the 
bottom panel, for the same bin [49,50]N and [3,4]E, as above. For comparison, the green dots show the 
data and the step-like curve represents the average values (including the filled in) in the bins. Note, that 
the average models do not follow closely bin averages. It is clear that the model approximation (5,5,05) 
is closer to the data than approximation (3,3,05). We have found that the model performance is 
improved, when we increase N1, N2, along with N3, as they depend on each other.  

 
We found that better approximation of the data is obtained with T=96 than T=48. The latter range is too 
short and the data are not enough for a reliable approximation. The larger time range, from one side, 
requires larger number of coefficient, but shorter ranges, from the other, do not contain enough data. 
Running the models with different time range (48 min, 96 min, 24 hours) we concluded that T=96 min 
is an optimum between these requirements. 

 

 
Figure 7: Data (green dots), bin averaged (step-like curve), short-range model (red dots) and weighted model curve (blue 

curve) fir the bin [49,50]N and [3,4]E. Top panel:. model approximation (3,3,05); Bottom panel: model 
approximation (5,5,05). 
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4.3 Error assessment 
 
We used RMS (Root Mean Square) error as an estimate for assessing the model performance. RMS 
error, calculated over the whole day 359 of 2004, varies between 1 and 2 TEC units (TECU). In long 
models (T=24), RMS error varies between 1.4 for N3=25 and 1.8 for N3=13. Increasing or decreasing 
N1 and N2 yields a reverse change of RMS error. For short models, RMS error is more sensitive to N1 
and N2, than to N3. For models with N1=N2=3, RMS error is around 1.5, while it decreases to 1.2 for 
N1=N2=5. It looks surprising that RMS error of the short models is less sensitive to N3 than to N1 and 
N2. Indeed, for a fixed number of spatial coefficients N1 and N2, RMS error slightly decreases with 
increasing N3 and this decrease is stronger for lower order spatial approximation. Figure 8 shows RMS 
error calculated for the bin [49, 50]N and [3, 4]E in the whole day 359 of 2004. In the upper plot, the 
RMS error of model (5, 5, 3) with T=48 min (red curve) and T=96 min (blue curve) is shown. Green 
curve represents the error of the long-range model (5, 5, 13) with T=24. The number of data points is 
given for reference by the black curve; the number of points is divided by 1000 to use the same scale in 
TECU.  Both short-range models have practically the same error; the spike increase before 04:00 UT is 
due to the fact that TEC, obtained from two GPS satellites at same place and time, have quite different 
values (see Fig.7). The long-range model (5, 5, 13) has much higher error, especially daytime, although 
the time approximation uses 13 coefficients. This is another example of the advantages that short-term 
models inherit. The lower plot compares RMS error of three long-term models. The green curve 
represents the same model as above, the red and green curves represent models (5, 5, 25) and (5, 5, 31) 
respectively. It is clear, than a long-term model needs 31 coefficients of time approximation to reduce 
the error in the level that a short-range model with T=96 achieves. We can conclude that RMS error of 
LLT approximations is comparable (or even less) that the error of obtaining TEC from the GPS signals.  

 

 

 
Figure 8: RMS error (color curves) in TECU calculated for the bin [49, 50]N and [3, 4]E on day 359 of 2004. The black 

curve refers to the same scale and show the number of data points divided by 1000. The upper plot shows RMS 
error of model (5, 5, 3) with T=48 min (red) and T=96 min (blue) as well as the model (5, 5, 13) with T=24 hours 
(green). The lower plot represents RMS error of models with T=24 hours: (5, 5, 25) in red, (5, 8, 13) in green, and 
(5, 8, 31) in blue. 

 14



 

 
 5. Localizing the TEC disturbances 
 
The key element of the proposed approach is the use of the LLT model for localization of TEC 
disturbances. As was shown above, higher order polynomials (larger number of coefficients) capture 
more details of the irregular structure of TEC, than the lower order polynomials. We subtract a pair of 
short time range models with slightly different number of coefficients and assume that the residuals 
represent local disturbances.  
 
We consider the following criteria for specifying N1, N2, and N3 in order to capture smaller TEC 
structures. If X1 is the latitude range (46 to 52 degree), X2 is the range of longitudes (-1 to 11), and T 
is time range, the smallest size structures (threshold) which can be detected along each axis is defined 
by X1/(N1-1), X2/(N2-1), and T/(N3-1). These criteria are based on the fact, that a polynomial of k-
degree can capture k-1 extremes (maximums and minimums). Subtracting models with different 
number of coefficients, we actually separate structures with size equal to the difference between both 
thresholds. For example, considering models (3, 3, 5) and (3, 3, 3), we see that the first model can 
localize structures with size S larger than 3°x 6° and duration D more than 24 min (as X1=6, X2=12 
and T=96 min), while the second model localizes structures with the same size S, but with duration D 
longer than 48 min. When subtracting both models, we localize a structure with a size, exceeding 3°x 
6° (S>3°x 6°) and duration between 24 min and 48 min (24<D<48). By varying N3, we can capture 
structures with apriori specified duration range. By analogy, we can subtract models with different N1 
and N2 and localize structures with specified size range. Residuals, when subtracting the models (5, 5, 
3) and (3, 3, 3), localize structures with size of 1.5°x 3°< S <3°x 6°. Duration, however, is not so 
strictly confined to particular time limits: all structures lasting longer than 48 min will be captured 
(D>48). 

 
Figure 9 visualizes the difference between four pairs of short time range models (T=96 min) in the 
latitude/longitude frame from 17.5 to 18.1 UT. Each pair is shown in separate columns, as the time is 
increasing downwards. Comparing plots formed by residuals of the four pairs at any moment (given 
line), we see that the right (forth) column contains most detailed structure, which fade to the left. The 
time sequence clearly shows movement and development of well-defined TEC structures. 
 
The first and second columns show the difference between models with the same spatial 
approximation. Any structure appearing in these columns are due to the difference in time 
approximation. The spatial approximation modulates only the magnitude of the structures, defined by 
the temporal approximation. Because the temporal approximation has trigonometric basis, N3=3 means 
approximation with two waves: the basic, with period of 96 min and its first harmonic, with period of 
48 min. Similarly, N3=5 means four waves: the basic, with period of 96 min and its three harmonics, 
with period of 48, 32, and 24 min, respectively. Third and forth columns represent the difference 
between models, having the same temporal approximation, but the spatial surface is described by 
polynomials of 2nd and 4th degree. Figure 9 definitely shows that the difference of spatial 
approximation (columns 3 and 4) provides more detailed structure than the difference in temporal 
approximation (columns 1 and 2). The model error can easily explain the fact that the RMS difference 
between spatial approximations is larger than the RMS difference between temporal approximations 
with the same N1 and N2 coefficients. It is reasonable to assume that both, the spatial and temporal 
structures are coupled and characterize the size and duration of real disturbances. 
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Figure 9: Differences between four pairs of short time range models (T=96 min) in the latitude/longitude frame from 17.5 

to 18.1 UT. Model pair, size S, and duration D are given in the following Table 1. 
           Table 1. 

column model pair size S duration D 
1 (3,3,3)-(3,3,5) S> 3°x 6° 24<D<48 
2 (5,5,3)-(5,5,5) S> 1.5°x 3° 24<D<48 
3 (3,3,3)-(5,5,3) 1.5°x 3°<S<3°x 6° D>48 
4 (3,3,5)-(5,5,5) 1.5°x 3°<S<3°x 6° D>24 

 

 16



 

 
 

 
 
Figure 10: see Table 2 and description in the text 
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In the Figure 10, we compare first four lines of Figure 9 (17.5 to 17.8 UT) with another four pairs of 
models with larger difference of coefficients, taken for the same time interval. Model pair, size and 
duration for the lower part of Figure 10 are given in Table 2. By comparing the respective plots from 
the upper and lower parts of the figure, we see that the structures remain the same; in the lower part 
their magnitude is enlarged in both (positive and negative) directions. The larger differences in 
coefficients yield larger magnitude of disturbed structures. The graphic software marks with blank 
spots the magnitudes exceeding the specified range on the right of each plot. It has to be noted that the 
larger magnitude range decreases the color resolution, so we preferred to keep the resolution the same 
for all plots in the figures. The main conclusion that can be drawn is that localization is sustainable 
independently of the different approximations. The time development of the structures is physically 
reasonable. 

 
The plots in the first two columns on the left-hand side of Fig.9 and Fig.10 show fewer details in 
comparison with the last two columns on the right-hand side. We can explain this fact with the 
constrained duration (12<D<48) imposed on the localized structures. On the contrary, the limited size 
in the other two columns does not filter out most of the structures. It is reasonable to assume that the 
characteristic duration is longer that 48 min while the specified size limits allow certain class of 
disturbances to be revealed. More work is needed to define the proper time and size ranges of main 
disturbances, and the results obtained so far are good basis for further development. 

 
 

           Table 2: legend for the lower 4 rows of Figure 10 
column model pair size S duration D 

1 (3,3,3)-(3,3,9) S> 3°x 6° 12<D<48 
2 (5,7,3)-(5,7,9) S> 1.5°x 2° 12<D<48 
3 (3,3,3)-(5,7,9) 1.5°x 2°<S<3°x 6° D>48 
4 (3,3,9)-(5,7,9) 1.5°x 2°<S<3°x 6° D>12 

 
 
One important question is whether the residuals represent the real disturbed structure of TEC or not. It 
might be expected that higher order polynomials can form false extremes or large gradients at the map 
borders. Our experience, based on numerous runs of the model suggests that this is not very probable. 
From general considerations we conclude that the model can express extremes over the data availability 
areas only. In the areas without data, the bin averages form smoothed distribution and both, lower and 
higher order models would produce the same fit. That means that their residuals would be of negligible 
magnitude. Because the averages weight 66 times more than individual data, the model can form an 
extreme if the number of data points in the bin considerably exceeds 66. Another indirect evidence of 
capturing real disturbances comes from the time development of localized structures. Fig.8 and Fig.9 
show that localized structures are sustainable and develop with time. Their behavior looks physically 
meaningful.  
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6. Spectral analysis 
 
The LLT model offers a unique possibility to study the spectral characteristics of the observed TEC 
structures. Once the measured TEC are approximated by a model with a given set of coefficients, we 
can use DFT (Discrete Fourier Transform) method to obtain the power spectra as a function of time in 
each individual LAT/LONG bin. In the present analysis, the DFT algorithm and the power spectra is 
presented by Fourier coefficients obtained within a short time window. We slide the time window with 
a step dt and obtain coefficients along the time axis. In this way, by sliding the time window from 0 to 
24 hours, we obtain diurnal variation of amplitude of each period considered. DFT method uses sin and 
cos functions to obtain amplitudes and phases of the basic wave and its harmonics. The DFT 
coefficients Ci are obtained as: 
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where N=2M+1is their number in the time window, Ck (k, n = 1,…M) are the coefficients of the DCT 

development, Zn  are the model TEC values; cf is the normalization factor: 
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Figure 11:  Amplitudes obtained by applying DFT to the model (5, 7, 9) with T=98 min. The basic wave (with period 48 

min) and of its harmonics obtained in the bin [49, 50]N and [3, 4]E on day 359 of 2004. Red curve represents A1, 
the other colored curves (from pink to violet) represent amplitude of 7 harmonics with increasing k number.  
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Fig.11 shows 8 amplitudes obtained by fitting DFT formulas to TEC values from the model (5, 7, 9) 
with time range T=96 min, in the bin [49, 50]N and [3, 4]E on day 359 of 2004. The time window for 
fitting DFT is 48 min, sliding with step of 12 min. Amplitudes and phases are assigned to the center of 
the time window. DFT consists of 8 waves, with a basic period of 48 min and its harmonics having 
periods of 48/k min. Figure 11 shows that the amplitude of the basic period is the largest and 
monotonically decay with the wave number k. It means that the main disturbances have equivalent 
periods larger than 48 min. Amplitudes vary with local time, expressing a marked maximum around 09 
UT.  
 
The lower panel of Fig.12 shows the power spectra as a wavelet. The ordinate shows the wave number, 
which represents periods in minutes as 48/k. The color scale on the right shows the magnitude of 
amplitudes in TECU. Vertical cross-section at any moment represents power spectra of the composing 
waves. The wavelet visualizes the dynamics of disturbances of TEC passing through the bin during the 
whole day. The upper panel reproduces the lower plot of Fig.7, in which the model (5, 5, 7) is shown 
by the red line, along with measured TEC (green dots) and the number of data points in units of 1016 
cm-2 (black). There is no visible correlation between the location of measure TEC and power spectra. 
The latter is evidence of the reliability of present approach for spectral analysis.  
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Figure 12: Upper panel: model (5, 5, 7) in red, measured TEC with green dots, and number of data points in units of 1016 

cm-2  in black. Lower panel: the power spectra wavelet of amplitudes of Fig. 11. The magnitude of amplitudes is 
color coded in the right.  
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The physical interpretation of the observed wave structures is outside the scope of this work. In the 
next Fig.13 we demonstrate how the method of spectral analysis can be used to reveal some physical 
features of the observed phenomena. The upper row of the figure shows LAT/LONG maps of the 
residuals between models (5,5,3)-(5,5,5) obtained from 17.9 to 18.2 UT. It is seen the rise and decay of 
a small negative disturbance, stretched from northeast to southwest in the right part of the map. 
Because disturbed structure is revealed only by the residuals along the time axis (both spatial 
approximations are the same), according to Table 1 the size is larger than 1.5×3.0 and period is 
constrained between 24 and 48 min. Thus, we can consider that the observed structure reveals a part of 
a larger spectrum, limited within the above size and time ranges. The second and third rows from above 
show amplitudes of the basic period of 48 min and the first harmonic with period of 24 min (k=2). The 
last two rows show respective phases. It has to be noted that the phases are defined in the range [+π, -π] 
and the maps show discontinuity (sharp transition between red and blue) at places where phases go 
through π. Later we have to find another more attractive way to represent the phase development. It is 
evident that the disturbed structure in the first row is associated with increase of amplitudes (better seen 
for the basic wave) and the phase with a values close to π. The wave spatial structures closely resemble 
that of the density disturbance.  
 
 

       
 

       
 

       
 

       
 

       
 
Figure 13: Residuals between models (5,5,3)-(5,5,5) (top row), wave amplitude with periods 48 min (2nd row) and 24 min 

(3rd row) and their respective phases (4th and 5th rows) for the 4 moments (columns) between 17.9 and 18.2 UT. 
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7. Correlation between modeled disturbances and geophysical indices 
 
The main task of WP310 is to reveal the correlation of modeled disturbances and geomagnetic and 
solar activity indices. To study such a correlation, we need a long time series of data comprising at least 
several months (to account for seasonal effects) or several years (for solar cycle variations). It is 
obvious that for the present project we cannot form such large databases. To find a solution in the 
frame of the project we apply a comparative analysis by using an intermediate parameter, known to 
correlate closer with the modeled disturbance dynamics. As an intermediate parameter we use the RTK 
ionospheric intensity (or RTK events), defined and analyzed by Warnant et al, 2007a and 2007b. This 
parameter is defined as the standard deviation of de-trended TEC data from a single receiving station, 
averaged in 15 min interval. RTK ionospheric intensity is quantified in nine grades, depending on its 
values. We first will compare the RTK events obtained in the same period when model disturbances are 
available. Having obtained the consistency between them, we then will use a database, complied of 
RTK events during years 2000-2002 for correlation analysis. We will calculate correlation functions of 
RTK evens and geomagnetic indices K, Dst, and Hpi (Hemispheric Power index), and solar activity 
index F10.7 for a range of time lags. We assume that the correlation thus obtained will be 
representative for the ionospheric activity defined by model-extracted disturbances. These results will 
be presented in the final report of WP310. 
 
8. Conclusions  
 
We utilized a new approach for studying ionospheric disturbances. TEC, derived by the Belgian Dense 
Network of GPS stations within geographic area (46°x52°)N and (-1°x11°)E is approximated by 3-D 
polynomials of different degree. The corresponding model is named the Latitude-Longitude- Time 
(LLT) model. The residuals, when subtracting lower degree from higher degree polynomials, are 
considered representative of local density disturbances. We demonstrate that the present approach can 
localize TEC structures and follow their movement across the area. By using LLT model, we can 
determine the size, direction and speed of MSTIDs. We demonstrate also capability of the method of 
obtaining spectral characteristics of ionospheric disturbances by using a Fourier transform method. The 
knowledge of dynamics and spectral characteristics is a key factor of identifying and predicting of 
those ionospheric disturbances, most effectively degrading GPS position accuracy.  
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