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1. Introduction 
 
The geomagnetic activity is the primary cause of ionospheric disturbances. There are 
several ways in which the increased geomagnetic activity can affect large scale 
ionospheric structures: through changes in thermospheric composition, ion drag by 
atmospheric winds, electrodynamic drifts, and large scale travelling atmospheric 
disturbances (TADs). Geomagnetic activity characterizes the degree of disturbance of the 
Earth magnetic field and the level of this disturbance is quantified by a number of 
indices, each of which characterizes the origin and the time scale of its variations. The 
Dst index, for example, represents magnetic disturbances caused by the magnetospheric 
ring current with 1-hour sampling rate, while the sym-H index quantifies the same 
disturbances with 1-minute sampling rate. The auroral activity is represented by the AE 
index and its components: AU representing the eastward electrojet (in the evening sector) 
and AL the westward (morning) electrojet. Magnetic disturbances at midlatitudes are 
caused mainly by the ring current and auroral electrojets, although other magnetospheric 
currents and telluric currents on the Earth surface can also contribute. The midlatitude 
magnetic disturbances are quantified by a number of indices A and K, depending on the 
method of deriving them. Each of the abovementioned indices is derived from a specific 
number of magnetic stations and represents the global (planetary) geomagnetic activity. It 
is well accepted that the planetary 3-hour K (Kp) and the daily A (Ap) indices are the best 
representatives of the large-scale midlatitude ionospheric disturbances (Thomsen, 2004; 
and the references therein).   

 
The small-scale ionospheric disturbances affecting GNSS applications may have another, 
non-geomagnetic origin. They can be caused by TADs, atmospheric tides, acoustic 
waves, etc. As shown by Warnant et al. (2006a, 2006b), these ionospheric disturbances, 
and particularly those related to the RTK ionospheric intensity, can be observed both 
during and outside geomagnetic storms. During storms, however, the RTK intensity is 
much higher than during geomagnetically quiet periods. Nebdi et al. (2004) have shown 
that excessive RTK intensity (>19 IE units) is observed in 83% of the cases when Kp>7, 
and in 100% of the cases at Kp >8.  It means that the ionospheric disturbances generated 
during high geomagnetic activity (i.e. for high Kp values) tend to stronger affecting the 
GPS positioning accuracy. In this sense, the Kp index specification and prediction is of 
vital importance for the GNSS users. 

 
The 3-hour Kp index, being a good representation of the large-scale ionospheric 
disturbances known as ionospheric storms, is too inaccurate when representing 
disturbances that may potentially degrade the GPS positioning accuracy. The small-scale 
disturbances are localized phenomena and the local K index derived from the nearest 
magnetic station better fits these disturbances than the planetary Kp. Additionally, the 3-
hour time-scale is much larger for the shorter characteristic time of small-scale 
ionospheric variations. Taking into account these general constrains, we use further the 1-
hour K index derived at the Dourbes magnetic observatory. The local K index derivation 
from magnetogram records is specific for each magnetic station because it depends on the 
station’s latitude and because the deviations from the quiet Sq variations need to be 
calibrated with those of the reference magnetic station of Niemegk (Bartels et al., 1939; 
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Mayaud, 1980). Della-Rose et al. (1999) have shown that the K index obtained by the 
same methodology but with different time windows (from 15 min to 5 hours) provide 
considerably different values. This fact raise the question of whether the 1-hour K values 
differ from the conventional 3-hour K index values and to what extent. To avoid this 
uncertainty, we plan to calculate K values in a 3-hour window, but sliding this window 
with 1-hour step. The K value at each step is assigned to the center of window. We do not 
know whether this method has been used before in geomagnetic practice, but it is widely 
used in ionospheric studies. The sliding window has the advantage to smoothes out small-
scale variations and increases the sampling rate.  

 
The numerous models providing forecast of geomagnetic indices can be divided in two 
main groups. The first group includes models based on extrapolation of past data and 
delivering forecast for a few hours ahead. However, the extrapolation technique cannot 
take into account the sharp increase of geomagnetic activity at the onset of geomagnetic 
storms and the forecast is therefore limited to periods of relatively quiet conditions. The 
second group of models is based on solar wind parameters which are used as predictors 
of the solar wind – magnetosphere interactions.  
 
The geomagnetic indices reflect the complex non-linear transfer of energy deposited by 
the solar wind into the magnetosphere with a subsequent transfer of energy to the polar 
ionosphere. Some models (Costello, 1997; Boberg et al., 2000; Balikhin et al., 2001; 
Boaghe et al., 2001; Wing et al., 2005) use neural network (NN) technique to forecast the 
Kp, AE and Dst indices with a lead time of 30-60 minutes which is the time needed for 
the solar wind stream to pass the distance between the Lagrangian (L1) point and the 
Earth’s magnetosphere. Other models use empirical relations between the solar wind and 
the geomagnetic activity parameters which are based on some well-known physical 
analogues. In a further description, we will consider this type of analogue models. Hones 
(1979) and Klimas et al. (1992) have used the dripping faucet analogue to describe the 
plasmoid formation in the magnetosphere tail, the main transposer of solar wind energy 
into substorm activity. Baker et al. (1990) and Vassiliadis et al. (1993) have used an 
electric LRC circuit of a damped linear oscillator to represent the return of a “perturbed” 
magnetosphere to its “quiet” state. Muhtarov and Andonov (2000), denoted further as 
MA, developed a model relating Kp to the Interplanetary Magnetic Field (IMF) Bz 
component by using an electric diode rectifier circuit (DRC) analogue. It is well accepted 
that Bz is the main driver of geomagnetic activity and of the Kp variations in particular 
(Kamide et al., 1998). The circuit of the MA model is similar to that of Vassilliadis et al. 
(1993) in which the inductance part was replaced by a half-wave diode rectifier. MA used 
Bz as an input voltage, while the output voltage was defined as a “modified” Bz (Bzm), 
having positive variations only. The hourly values of the new quantity, Bzm, were 
correlated with the hourly-interpolated Kp values to obtain the model parameters.   
 
The negative turn of Bz causes an increase of Kp, known as “driven” response (Klimas et 
al., 1991). The increase of Bz or turning positive is not followed by an immediate and 
proportional decrease of Kp. The changes of Kp appear more gradual and delayed. MA 
found that the cross-correlation between Bz and Kp had a maximum at a time lag of 
about 2 hours. This means that Kp best correlates with Bz from the previous 2 hours. In 
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order to improve the dependence of Kp on Bz, MA introduced a new function of Bz 
(denoted as Bzm), which is positive and contains a delayed reaction to Bz changes. To do 
this, MA used an analogy with another inertial system, which involves “loading” and 
“unloading” processes with different time constants.  
 
The electrical circuit shown on Fig.1a represents such a system. The circuit includes a 
half-wave diode rectifier D, a smoothing capacitor C and two resistors R1 and R2. If 
assuming that the input voltage U1 is a step-like function formed by discrete values at 
arbitrary moments of time and R2>>R1 the output voltage U2 within the time-step [ti, 
ti+1] is given by the well-known relationship:  
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where T1=R1C and T2=R2C.  
 
The expressions (1) have recurrent feedback: the voltage U2 obtained from the previous 
step [ti-1, ti] is placed on the right-hand side of the equations for obtaining U2 in the next 
step [ti, ti+1]. The first expression in (1) represents a process of loading the capacitor C 
with a time constant T1, while the second expression represents the unloading process 
with a time constant T2. The loading takes place while U1 is higher than U2  and the diode 
is open. If U1 becomes lower than U2, the diode is closed and the capacitor starts 
discharging through the resistor R2.  
 
The abovedescribed process is schematically presented on Fig.1b. The input voltage U1 is 
represented as a simple sinusoid curve (the thin line) and the output voltage U2 curve (the 
solid line). The loading takes place when U1>U2. The output voltage U2 accepts now only 
positive values, gradually decreasing when U1 is lower. The time constants T1 and T2 
shown in Fig.1b are arbitrary and are used just to demonstrate the functioning of the 
circuit but do not relate to the values considered later in the paper. Making use of the 
analogy with this electrical scheme, MA defined Bzm through equation (1) with a 
replacement of U1 value with Bz and the U2  value with Bzm. 
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Figure 1: (a) Equivalent electric circuit DRC, giving the delayed reaction of the output voltage U2 to the 

input voltage U1. D is a half-wave diode rectifer, C is a capacitor, R1 and R2 are resistors;(b) a 
sample of a sinusoidal input voltage U1 and the resulting output voltage U2. Loading and 
unloading phases are marked with horizontal bars. T1 and T2 are assured arbitrary to demonstrate 
the functioning of the circuit and do not relate to the values considered in the paper. 

 
 
By using 27 years of IMF data (1973-1999), MA estimated that Bzm can raise the 
correlation between Bz and Kp from -0.4 to 0.7. Later, Andonov et al. (2004) further 
denoted as MAK, improved the model, adding dependences on solar wind dynamic 
pressure and velocity. The new model, named MAK, is part of the present HDK model. 
A short description of the MAK model is given below. 
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2. MAK model 
 
MAK calculated the cross-correlation between Kp and the available solar wind 
parameters. By ranking the magnitude of the cross-correlation, they included in the 
model, besides Bzm as in MA model, the higher correlated with Kp solar wind velocity V 
and dynamic pressure P. In this way MAK obtained the average dependence of Kp on 
those parameters. Based on the form of these dependences, the MAK model has then 
obtained in the following form: 
 
          Ksw = ao + a1Bzm + a2P + a3V + a4Bzm2 + a5PP

2                                                  (2)                                
 
Ksw now represents the model value of (2) which is presumably very close to Kp. The 
coefficients ai are obtained by fitting the expression on the right side of (2) to the ground-
based Kp values. This time the solar wind parameters were taken from the ACE 
(Advanced Composition Explorer) space platform for the years 1998-2004. ACE data are 
more homogenous than the data from the IMP satellites and assure better accuracy in the 
modeling. Because the ACE data base consist of hourly values of Bz, V and P, the 3-hour 
Kp values for the same period were interpolated to obtain the hourly values. To perform 
the fitting of expression (2), MAK first obtained the time constants T1 and T2 in Bzm in 
the following way. The right hand side of (2) was repeatedly fitted to Kp values from the 
whole database by using the grid of pairs (T1, T2). The corresponding RMS (root mean 
square) deviations of model from data were calculated for each pair and then compared. 
MAK defined the model time constants as those having the minimum RMS. Using ACE 
database in period 1998-2004, MAK found T1=3 and T2=7 hours. Therefore, the time 
constants of the delayed reaction of Kp to Bz forcing were obtained as average over the 
whole database. 
 
The model error (alternatively, the model accuracy) is an important characteristic of the 
model. The average root mean square deviation of the model Ksw values from the 
observed Kp values (i.e. the overall model error) was estimated at 0.63 KU (K unit). It is 
known that the conventional Kp is defined in the range from 0 to 9, having 3 grades 
around each unit (for example, 2-, 20, 2+).  In order to digitize these symbols, we assign 
the value of 1.66 to “2-“, 2.0 to “20”, and 2.33 to “2+”. Similar assignment (-0.33, 0, 
+0.33) is made to each Kp unit. In Fig.2 a comparison is made between the MA model 
error (diamonds), the MAK model error calculated from the 3-hour Kp values (triangles), 
and the MAK model error calculated with all hourly Kp values (circles). The error was 
calculated separately for each 1 K unit of Kp. This presentation clearly shows that the 
model error is lowest around the point of Kp=2 where the occurrence probability has a 
maximum. At this point, the three estimates are closest to each other. It is evident that the 
MAK model with hourly Kp performs best. Even for extreme cases of Kp=8, the model 
error still remains below 1 K unit. Notice that the overall error is not a simple averaging 
of curves in Fig.2 but depends also on the number of values in each Kp unit bin, which 
has a maximum around Kp=2. The model error estimated by using the 3-hour Kp data set 
is 0.72 KU, or about 14% higher than that estimated from the interpolated hourly Kp set. 
The model error of MA is 0.96 KU.  
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Figure 2: Model errors of: MA (diamonds), MAK with 3-hour Kp (triangles) and MAK with 1-hour 

interpolated Kp (circles) calculated for each unit-wide bin of the Kp magnitude. 
 
 

It is important to compare the MAK model performance with some of the internationally 
recognized models, for example the Costello forecast model (Costello, 1997) that was 
implemented in the operational forecast service at the Space Environment Center of 
NOAA, Boulder, Colorado. A comparison is shown in Fig.3. Although the Costello 
model is based on the Neural Network (NN) technique and the MAK model employs 
another, linear regression method (2), both model errors are of similar magnitude. Figure 
4 shows another comparison: between MAK and Lund Observatory Kp forecasting 
model (Boberg et al., 2000), also based on the NN technique. The absolute values of the 
MAK model error, shown in Fig. 2 and Fig. 3 are quite different, which is due to the 
different databases used for the comparison. For the comparison with Costello model, 
only few months of data in 2003 were available. The limited database resulted in much 
larger RMSE than it is shown in other figures. In Fig.4, comparison is made again on 
limited data by using the 3-hour Kp only. Therefore, these model errors should be 
compared separately and not in the context of further error estimates which are based on 
much larger database.   
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Geomagnetic activity models, like MAK, based on solar wind measurements onboard 
ACE, can predict sudden changes some hours before the Earth magnetic field reacts. It 
takes about half an hour for the solar wind to pass the distance between L1 libration 
point, where ACE is places, and magnetosphere (4.6 x106 km) and two more hours for 
development of substorms and intensification of the ring current. Therefore, we can 
accept that solar wind based models are capable to predict changes in the K index at least 
3 hours in advance. Apart from this important advantage, these models have certain 
disadvantages. Usually, the Kp changes are not proportional to the IMF Bz negative 
deviations. MAK time constants, derived on statistical basis, cannot properly determine 
Kp rate of change in all individual cases.  

 
 
 

 
 

Figure 3:  Comparison between MAK and Castello model errors (RMSE) 
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As it was pointed out above, forecasting models based on weighted extrapolation of past 
K values can make reasonable predictions for a much longer period of time (longer lead 
time) than the solar wind based models can possibly do.  
 
Theoretically, reasonable predictions can be made for a time period up to the value of the 
time constant of the autocorrelation function. Since the K index time constant is 18-20 
hours, predictions based on the weighted extrapolation can be made for nearly one day 
ahead provided that sudden changes in the solar wind parameters do not occur. It is 
therefore reasonable to develop a model which would combine the advantages of both 
approaches: the longer lead time of the weighted extrapolation and the detection of 
sudden changes by monitoring the solar wind parameters. The so called Hybrid Dourbes 
K (HDK) model is a realization of the abovedescribed concept. 
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Figure 4. Comparison between MAK and Lund model errors (RMSE) 
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3. HDK model development 
 
The operation of the Hybrid Dourbes K (HDK) model is demonstrated by the flowchart 
in Fig.5. The HDK model consists of two branches which are merging in the last stage to 
produce the final product, e.g. the Dourbes model value of K.  
 
 

 
 

Solar  
Wind  

Parameters 

MAK  
Model Ksw 

Dourbes 1- min 
Magnetometer 

Data 
Calculate  

3-hour K index 
 every hour 

Kd 

 
 

Delta=Ksw-Kd
 

 
Figure 5: Flow chart of the Hybrid Dourbes K model. The upper branch represents the adoption of MAK-

derived Ksw to the derivation of the Dourbes K index. The lower branch represents the 
production of the K index on a 1-hourly basis.  

 
The upper branch of the model represents the development/operation of the MAK model, 
by re-calculating model coefficients for Dourbes K data. The lower branch represents the 
production of the 3-hour index Kd with 1-hour step resolution. At the end of the chart, 
both branches merge to produce the quantity Delta, being the difference between the solar 
wind-derived Ksw and the K value derived from magnetograms, i.e. Kd. Thus, the 
quantity Delta is a key element of the new HDK model. 
 
 
 
 
 3.1 Adoption of MAK model to Dourbes K index 
 
Originally, the MAK model coefficients were obtained by fitting the model expressions 
to Kp values in the period 1998-2004 when ACE data were available. To adapt the model 
to the Dourbes K data, we have to check first whether the average dependences of K on 
solar wind parameters remain the same. We assumed that the dependences would be the 
same if the cross-correlation coefficient between the 3-hour Kp and Dourbes K indices 
exceeds 0.8. Fig.6 shows the normalized cross-correlation function between the indices 
versus time lag. The colored lines represent the cross-correlation at different 3-hour local 
time intervals. The maximum cross-correlation of all time-intervals is achieved at the 
time lag = 0, which means that there is no delay between the variations of the two 
indices. 
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Figure 6: Cross-correlation between the 3-hour Kp and Dourbes K indices for the time lag ±20 hours. 
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Figure 7: Local time variation of the cross-correlation between 3-hour Kp and Dourbes K indices for the 

time lag = 0. 
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Fig.7 shows the cross-correlation between Dourbes K and Kp at the time lag = 0. The 
maximum of 0.929 is seen in time interval (00-03) hours. The minimum cross-correlation 
of 0.869, or 6% lower, is in (09-12) hour interval. The local time differences are 
expected, because of the asymmetry of current system in the auroral oval. The evening 
and morning electrojets are generally on the night side and then the Dourbes K represents 
better the magnetic disturbances in the auroral oval (captured by Kp) than it does on the 
dayside. The high cross-correlation between Dourbes K and Kp with only 6% tolerance 
proves that the MAK definitions are applicable to Dourbes K index. 

 
The Dourbes K index was linearly interpolated to obtain 1-hour resolution values. The 
interpolated hourly values are further denoted as Kd. In accordance with the database 
changes, two new sets of coefficients were obtained. The first set of coefficients ignores 
their local time dependence. The respective formula for Ksw is: 

 
          Ksw = - 0.009347 Bzm2 + 0.350934 Bzm  + 0.004763 V - 
                       -0.005151 P2 + 0.188879 P  - 0.687897                                               (3)                                    
 
Fig. 7 shows that the cross-correlation between Kp and Dourbes K indices is local time 
dependent. Previously, we have obtained (results not published yet) that the Kp-based 
Ksw had also local time dependence. By definition, Kp is a planetary index and should 
not have a local time dependence. The same is true for Ksw, because solar wind 
parameters and not local time dependent. The local time dependence for Ksw was 
obtained by calculating the model coefficients from K values separately for each hour of 
the day. Precise calculations of Ksw would require using local time dependence of each 
coefficient ai. We assumed that the local time dependence of model coefficients is a 
second order effect and at present HDM model we neglect this correction. Nevertheless, 
for the sake of completeness, the hourly values of model coefficients were calculated and 
presented in the following Table 1.  
 
Table 1  
 h          a1                    a2                  a3                  a4                     a5                 a0 
00 -0.014530  0.447056  0.004705 -0.005838  0.208673 -0.714878 
01 -0.011754  0.430674  0.004578 -0.005148  0.185335 -0.678447 
02 -0.009146  0.398970  0.004500 -0.005982  0.183642 -0.664761 
03 -0.007609  0.362546  0.004371 -0.005287  0.177946 -0.619901 
04 -0.008068  0.359614  0.004280 -0.005422  0.183568 -0.653496 
05 -0.007885  0.347272  0.004230 -0.005493  0.180562 -0.666528 
06 -0.007539  0.331876  0.004224 -0.007483  0.195623 -0.704093 
07 -0.008119  0.321497  0.004362 -0.006718  0.189059 -0.788550 
08 -0.007363  0.292517  0.004387 -0.007850  0.202172 -0.776112 
09 -0.006850  0.267942  0.004280 -0.007654  0.207768 -0.654227 
10 -0.007863  0.262154  0.004323 -0.006743  0.212033 -0.621137 
11 -0.008664  0.265612  0.004322 -0.006141  0.213254 -0.581020 
12 -0.009836  0.278203  0.004403 -0.008798  0.241555 -0.624165 
13 -0.010438  0.298423  0.004595 -0.010334  0.255362 -0.700733 
14 -0.007332  0.280015  0.004911 -0.009651  0.258763 -0.780298 
15 -0.006696  0.297829  0.005209 -0.011783  0.269778 -0.887531 
16 -0.007491  0.330674  0.005585 -0.009884  0.252434 -1.020659 
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17 -0.008580  0.355044  0.005685 -0.006433  0.223470 -1.001479 
18 -0.010902  0.398185  0.005654 -0.005592  0.206741 -0.979049 
19 -0.013991  0.459716  0.005547 -0.007445  0.234674 -1.011828 
20 -0.015818  0.475589  0.005382 -0.008505  0.251381 -0.960969 
21 -0.016586  0.471143  0.005216 -0.008048  0.244417 -0.898543 
22 -0.018755  0.489312  0.005024 -0.005423  0.215716 -0.812965 
23 -0.018681  0.485708  0.004832 -0.005531  0.213477 -0.757474 
 
 
 
The model expression (3) will take the form: 
 
         Ksw[h]= a1[h]Bzm[h])2 + a2[h]Bzm[h]+ a3[h]V[h]+ 
                      +a4[h](P[h])2 +a5[h]P[h] +a0[h]                                                             (4) 
                                                                        
 
 
The time constants T1 and T2 were also recalculated. Their average values remain the 
same as in the Kp-based model: T1=3 hours and T2=7 hours which is reasonable in view 
of the high coherence between Kp and Dourbes K. 
 

 
 3.2 HDK algorithm 
 
The main idea of the combined use of Ksw and Kd is that at any given moment Ksw is 
corrected by the differences between Ksw and Kd (named Delta) obtained at some past 
moments. We use the fact that at the current moment t, Ksw is a measure of the current 
conditions in the solar wind (within the last hour, if we deal with its hourly values), while 
Kd represents the averaged conditions of the Earth magnetic field (at least) in the last 3 
hours. So, at the current moment t, HDK provides the value of Ksw, corrected with an 
average of weighted Delta values at some previous hours, including the current, if 
available.  

 
To perform prediction, the HDK model uses the method of weighted extrapolation of 
Winner-Hopf. This method was first applied to ionospheric short-term predictions by 
Muhtarov and Kutiev (1999). In the method, the weighted coefficients, assigned to the 
past data, are obtained by the autocorrelation function of respective quantity.  
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Figure 8. Empirical autocorrelation function  (red line) of the hourly Dourbes K (Kd) and its exponential 
approximation (dashed blue line). The time constant is defined as the time at which the tangent 
at time lag=0 (green line) crosses the abscissa.   

 
 

Fig.8 shows the autocorrelation function of Kd. The empirical autocorrelation function is 
given by the red line, while the blue dashed line represents its exponential approximation. 
If the autocorrelation function can be approximated by an exponential function, as is the 
case in most ionospheric processes, the weighted correction can be limited to the nearest 
(first) past value only.  
 
The time constant of the approximated autocorrelation function is defined as the time at 
which the tangent at the point where the time lag = 0 crosses the abscissa. At that time the 
autocorrelation function decreases e times. The time constant of the Kd autocorrelation 
function is 20 hours.  
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Fig.9 shows the autocorrelation function of Delta up to 6 hours time lag. The time 
constant of Delta is 6 hours, much less comparing with that of Kd. If we denote the HDK 
model value at the current moment t with Kdf, the expression is the following:  

 
 Kdf(t)=Ksw(t) + MDelta + [Kdh(t-1) - Kdsw(t-1) - MDelta]*exp(-1/6)          (5)     
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Figure 9: Empirical autocorrelation function of Delta (blue line) and its exponential approximation (dashed 
line). The time constant of Delta is 6 hours. 

 
     

MDelta is the averaged Delta in the past 6 hours; (t-1) is the previous hour; the exponent 
is the weighting factor for the contribution from previous hour (in brackets). HDK 
algorithm works in the following simple way: At the current moment t, the model 
calculates (predicts) Kdf by using Ksw and the average Delta (MDelta). Kd at the time t 
is not taken into account. Kd actually goes one step behind and contributes to the term in 
brackets. The latter term is usually small during quiet conditions. If at the point of time t 
the Ksw value suddenly increase, Kdf will increase proportionally, providing that MDelta 
does not change. At next step, t+1, the term in brackets will be negative (Ksw(t) > Kd(t)) 
and tends to reduce the increase of Kdf(t+1) due to increasing Ksw values. 

  



 18

If one or two recent Kd values are missing, the model (5) can still calculate Kdf, because 
instead of Kd from the previous hour, values from earlier hours can be used, with their 
respective weights. This is important property of the model because it makes possible the 
use of magnetogram-derived K with larger sampling rate. For example, it is possible to 
use 3-hour Dourbes K values to obtain MDelta. Then MDelta will be an average of two 
3-hour K values only which will increase the error.  
 
Figures 10-12 show examples of HDK output Kdf, along with Ksw and Kd for 3 periods 
with different geomagnetic activity. Figure 10 represents the period 7–10 November 
2004, when two intense geomagnetic storms occurred on 7-8 and 10-11 November. HDK 
model curve (green line) follows much closer the ground-based Kd, than the solar wind 
Ksw (red line) does. It is interesting to follow the behavior of Kdf and Ksw during the 
late hours of 7th November. Kd (blue line) increases sharply following the sudden 
increase of Bz (not shown here). Ksw also increases but with some delay determined by 
the time constant T1. Obviously, in this case T1 (which is obtained as an average over the 
whole database) is larger than needed to closely follow Kd. The HDK output Kdf, 
however, stays closer to Kd due to the correction Delta. The back slope of Ksw cannot be 
compensated by Delta and the model values of Kdf also deviate from Kd. This is an 
example of a large discrepancy between HDK model and the data. 
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Figure 10: Hourly interpolated Dourbes K (Kdh), solar wind derived Kdsw , and the predicted Kdf during 

the period 7-10 November 2004. 
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Figure 11: Hourly interpolated Dourbes K (Kdh), solar wind derived Kdsw , and the predicted Kdf during 
the period 16-20 September 2000. 

 
 
Figure 11 shows a period with several modest storms (Kd not exceeding 5) and one major 
storm around 18 September 2000. The agreement between Kdf and Kd is excellent even 
in the periods when Ksw deviate form Kd.  
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Figure 12: Hourly interpolated Dourbes K (Kdh), solar wind derived Kdsw , and the predicted Kdf during 

the period 6-11 July 2001. 
 

 
Figure 12 presents a case at low geomagnetic activity (Kdh below 4). The model HKD is 
capable to reproduce even the smallest Kd values, when usually the models failed. 
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 3.3 Error assessment and verification of HDK model 
 

The hybrid model was found to perform well. Obviously, the concept of combining the 
advantages of MAK model and magnetogram-derived K index turns out to be very 
fruitful. The model error of using equation (5) is 0.38 KU. The high correlation between 
Kdf and Kd is confirmed in Fig.13 which shows the cross-correlation between the two 
quantities in the time lags –48, 48 hours. The peak of the function at time lag = 0 is 0.97. 
In Fig.14 comparison is made between the MAK and HDK model errors as depending on 
the K magnitude. For the whole range of K, the reduction of model error is 0.2 – 0.5 KU. 
The error reduction is especially large at higher K values, when predictions are most 
important for the NGSS applications. The use of the quantity Delta equalizes the error in 
the whole K range (0-9), which makes HDK model suitable for prediction. 
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Figure 13: Cross-correlation between input Kd and predicted Kdf 
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Figure 14: Model errors (standard deviation between the model values and data) of MAK (blue line) and 
HDK (red line). 

 
 

As mentioned above, the use of the 3-hour K values in MDelta yields larger model error 
(Fig.15). The blue curve represents HDK error by using the 3-hour K values only and the 
red curve is the error by using hourly Kd values. The difference here is of order of 0.4 - 
0.6 KU in the whole K range. We have to remind again that interpolated hourly Kd 
values have lower dispersion than the 3-hour K values, because the interpolated values 
triple the number of data points without contributing with their own scatter. 
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Figure 15: Model errors of HDK using 3-hour Dourbes K index (blue line) and hourly sampled Kd values. 
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4. Development of the HDK forecasting technique 
 
Kdf values exhibit a good reproducibility. Figure 16 represents its autocorrelation 
function (blue line). This function is approximated by an exponent (dashed line) with a 
time constant T=13 hours. To perform prediction of Kdf, we use the same method of 
Winner-Hopf, as we did for Delta. If we have the last obtained Kdf value at moment t, the 
predicted value Kdfp at the future moment (t+τ) is defined as: 

 
           Kdfp(t+τ) = Kdfmean + [Kdf(t)-Kdfmean]*exp(-τ /13)                                    (6)

 
Here Kdfmean, in analogy with MDelta, is the average of Kdf values for some hours in 
the past. The theory requires obtaining Kdfmean as average of 13 past Kdf values, but 
practically this average is very close the average Kd value in the whole database. That is 
why we take Kdfmean = 2.42, the same for all predictions. Expression (6) clearly shows 
the main property of the weighted extrapolation method: with increasing Kdfp tends to 
the average Kdfmean. 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time lag [hours]

0.00

0.20

0.40

0.60

0.80

1.00

A
ut

oc
or

re
la

tio
n 

fu
nc

tio
n 

of
 K

df

 
Figure 16: Autocorrelation function of predicted Kdf 
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Fig.17 shows the prediction error as function of the time of prediction (lead time). 
Prediction error is defined as standard deviation of predicted Kdfp from the actual Kdf 
values. Similar to Fig.15, the blue line represents the prediction error obtained by using 
3-hour K values and red line representing prediction error obtained by using the hourly 
(interpolated) Kd values. The algorithm (6) assures that predictions error up to 6 hours 
ahead does not exceed 1.0 KU. This is, of course, statistically averaged error; for 
individual cases the error could exceed the theoretical value. 
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Figure 17: Prediction error (standard deviation between prediction and HDK-defined Kdf for 1-hour (red 
line) and 3-hour (blue line) sampling rate. 
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5. Comparison with NN forecasting models 
 

To our knowledge, HDK is the first from the group of empirical (linear regression) 
models, combining solar wind and ground-based magnetic data for forecasting K index. 
HDK provides analytical expressions for nowcasting and forecasting K. There exist, 
however, models based on NN technique, which involve Kp along with solar wind 
parameters as a input for their calculations. Wing et al. (2005) developed a prediction 
model, named APL and compared their results with those of three other NN models: 
Costello (Costello, 1997), NARMAX (Balikhin et al., 2001), and Lund (Boberg et al., 
2000). In this comparison, Wing et al. (2005) have provided the correlation coefficient r 
only but not RMS errors. Therefore we had to calculate the HDK correlation coefficients 
and present the comparison in Table 2. 

 
Table 2: Correlation coefficient r estimated by different models 

model type r input parameters 
Castello NN 0.75 V, Bz, |B| 
NARMAX NN 0.77 V, Bz, |B|, Kp(t-3) 
Lund NN 0.77 V, n, Bz, 
APL NN 0.92 V, Bz, |B|, nowcast Kp 
HDK empirical 0.95 V, P, Bz, nowcast K 

 
 

The third column in the table shows the correlation coefficients and the fourth column 
shows the input parameters of the models; |B| is the absolute value of IMF. HDK 
correlation coefficient is calculated between Kd and Kdf values. It is clear that APL and 
HDK models show higher r due to the fact that they combine ground-based K with solar 
wind parameters. Wing et al. (2005) did not discuss why NARMAX, which also used 
past Kp values in its calculations, show much smaller correlation coefficient. 

 
Wing et al. (2005) developed two models for predicting Kp 1 and 4 hours ahead. Notice 
that the NN methods cannot provide prediction formula, function of the lead time as that 
of (6). Therefore, each prediction time needs separate model. For a lead time of 1 and 4 
hours, Wing et al. (2005) provides r = 0.92 and 0.79 respectively.  
 
Fig.18 presents the correlation coefficient between measured Kd and predicted Kdfp 
values. The lead time = 0 shows the correlation coefficient between Kd and Kdf. For 
prediction 1 and 4 hours lead time HDK correlations are lower: 0.88 and 0.68 against 
0.92 and 0.79 of Wing et al. (2005). Unfortunately, we do not have enough information to 
discuss their results: what is database used, how they obtain the nowcast value of Kp, etc. 

 
 



 27

0 1 2 3 4 5 6
Lead time [hours]

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 c
ro

ss
co

rr
el

at
io

n 
K

d-
K

df
p

0.95          0.88         0.80         0.73         0.68          0.63         0.59

 
Figure 18: Vertical bars represent correlation coefficient between Kd and predicted Kdfp for a lead time of 

1 to 6 hours. The lead time = 0 shows the correlation coefficient between Kd and Kdf. 
Correlation coefficient magnitude is shown at the upper axis. 
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6. Prediction and forecast 
 
The meaning of the terms “prediction” and “forecast” used in the report should be clearly 
distinguished. Prediction is a feature of the model, its capacity to guess a future state. 
Forecast is a service. Usually, the prediction model is a part of the forecasting software, 
which has additionally data collection part, I/O modules, data adjustment (correction) 
part, etc. In some forecasting software, as those developed in the framework of COST 
251 and 247 actions (Kutiev et al., 1999; Muhtarov et al., 2001) data adjustment is a 
separate part from the models. The data adjustment technique is important for 
forecasting, because it keeps model prediction (statistically average) close to the current 
data. In these cited papers, data adjustment is performed by correcting the model 
prediction by the currently obtained difference between prediction and data. In the HDK 
model this adjustment is part of the algorithm. Using the analogy with the above cited 
works, we can regard MAK model as prediction model and the other branch as data 
adjustment. Therefore, the HDK model is both prediction and forecasting software, with 
I/O part included, of course. 

 
How far ahead the forecasting can be made? Theoretically there is no restriction. Every 
user can decide how accurate the forecast should be. Fig.17 shows the expected error up 
to 6 hours lead time. Theoretically, when the lead time approaches the time constant (in 
our case T=13 hours), the predicted value approaches the average (Kdfmean) and the 
prediction error becomes close to the standard deviation of data around the average. This 
means that for predictions, exceeding 10-13 hours, it is better to use directly the average 
value of Kd (for our database it is 2.42), instead of making complex calculations. 

 
Another question should be also considered. It is about the apparent controversy between 
the real prediction of Ksw and statistically based prediction of Kdf. Indeed, we cannot 
predict any changes in K index, if we do not see the respective changes in solar wind 
parameters. In the MAK section above, we mentioned that the maximum lead time to 
predict the K changes caused by solar wind is 3 hours. Expression (5) shows the way the 
prediction works. On the other side, the HDK model value Kdf exhibits a good 
reproducibility with a time constant of 13 hours. Obviously, both predictions should be 
used together: we can make hourly predictions up to 13 hours ahead and when sudden 
change occurs in Ksw, Kdf will react immediately through (5) and changes in turn Kdfp 
in (6). So, when a change in Ksw occurs, Kdf and the whole prediction series from the 1st 
to the 13th hours ahead change simultaneously. Every last Kdfp (at the current time t) 
recalculate through (6) all prediction values with τ  from 1 to 13. 
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7. Conclusion 
 
A new model for predicting the geomagnetic K index has been developed based on the 
combined use of solar wind parameters and ground-based magnetic data. The present 
approach implements the previously developed solar wind based MAK model by 
calibrating its values with magnetogram-derived K index. The new model, applied to the 
K index issued at the Dourbes Center of Geophysics of the Belgian Royal Meteorological 
Institute, is named Hybrid Dourbes K (HDK) model. The HDK model combines the 
advantages of predicting the sudden changes of geomagnetic activity induced by solar 
wind with the longer term predictability of the K index.  

 
The MAK model coefficients were recalculated by fitting the model expression (2) to 
IMF Bz, solar wind velocity and dynamic pressure and Dourbes K index data. The 
database used for modeling consists of the hourly values of solar wind parameters and the 
hourly interpolated 3-hour Dourbes K index (Kd), collected in the period 1998-2004. The 
HDK model output, the quantity Kdf, is obtained by MAK model output Ksw, corrected 
with the average difference between several past values of Kd and Ksw. The model error 
of the new quantity Kdf is found to be 0.38 KU, or nearly twice less than that of the 
MAK model. Kdf has a good predictability. Prediction made by weighted extrapolation 6 
hours ahead carries an error of 1.0 KU, while for the first 1 hour the error is 0.58 KU 
only. 

 
The results shown in the report clearly demonstrate that the HDK model is capable of 
forecasing Dourbes K index in an hourly base with better accuracy that the other existing 
forecasting models. 
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